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Abstract

In this work, we present a common framework for seeded
image segmentation algorithms that yields two of the lead-
ing methods as special cases - The Graph Cuts and the Ran-
dom Walker algorithms. The formulation of this common
framework naturally suggests a new, third, algorithm that
we develop here. Speci�cally, the former algorithms may
be shown to minimize a certain energy with respect to ei-
ther an`1 or an `2 norm. Here, we explore the segmenta-
tion algorithm de�ned by aǹ1 norm, provide a method for
the optimization and show that the resulting algorithm pro-
duces an accurate segmentation that demonstrates greater
stability with respect to the number of seeds employed than
either the Graph Cuts or Random Walker methods.

1. Introduction

Image segmentation is an important problem in com-
puter vision. Traditionally, most segmentation algorithms
have focused on unsupervised segmentation, grouping ele-
ments of the image according to a criterion such as homo-
geneity. Recently, supervised image segmentation methods
have gained popularity since these methods give the user
(or preprocessor) the ability to affect the segmentation as
necessary for a particular application. Supervised segmen-
tation algorithms generally come in three types: 1) The
user is asked to provide pieces (usually points) of the de-
sired boundary which are then completed by the algorithm,
2) The user is asked to specify an initial boundary that is
“close” to the desired boundary which evolves to the de-
sired boundary or 3) The user is asked to provide an initial
labelling of some pixels as belonging to the desired object
to be segmented or to the background, after which the algo-
rithm completes the labeling for all pixels. Our focus in this
work is on supervised segmentation algorithms of the last
type.
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An excellent example of the �rst type of supervised seg-
mentation is the intelligent scissors (live wire) algorithm
[10, 4]. In this algorithm, the image is treated as a graph
and the user places several marks along the desired object
boundary. Then, Dijkstra's shortest path algorithm is used
to �nd a minimum length path connecting all marks and
this path is returned as the object boundary. However, these
techniques are often prone to fail in the presence of noise
and low contrast objects, since the shortest path is likely to
“shortcut” the desired boundary. Additionally, a high level
of accuracy is required from the user to place the marks pre-
cisely on the boundary.

The second type of supervised segmentation is exempli-
�ed by the family of active contour and level set methods
[8, 13], in which the user is generally expected to initialize
the algorithm with a boundary that is “close” to the desired
boundary. After this initialization, the boundary evolvesto
a local minimum that is returned as the �nal segmentation.
Many terms in the energy functional can be used to pre-
fer certain boundaries over others. However, there are two
main problems associated with these methods: 1) The en-
ergy terms are generally not convex, so that great care is
necessary to avoid an incorrect local minimum, 2) If the
segmentation is not correct, the standard avenues for cor-
rection are parameter adjustment or re-initialization, which
may be dif�cult for a naive user.

In the third type of supervised segmentation methods,
the user provides a partial labelling of the image (known
asseeds), after which a complete labelling is constructed.
Correction of an erroneous segmentation is accomplished
by specifying additional labels for the initializing partial la-
beling. Two popular seeded segmentation methods are the
Graph Cuts [3] and Random Walker [6] algorithms. Both
of these methods treat the image as a graph and minimize
certain energy functionals on this graph to produce a seg-
mentation. Since these energy functionals are convex, it is
possible to �nd the global optimum. Moreover, due to the
algorithm de�nitions on general graphs, they may be ap-
plied without modi�cation to an image of arbitrary dimen-
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sion.
In both of the Graph Cuts and Random Walker methods,

a weighted graph representation of the image is constructed.
Nodes of this graph correspond to pixels in the image and
edges are placed between nearby pixels. The edge weights
are determined by a similarity measure on these pixels such
that an edge connecting two pixels with a high similarity
should have a large weight and vice versa.

In the Graph Cuts method [3], the fore-
ground/background seeds are treated as source/sink
nodes for a max-�ow/min-cut operation. Using a max-
�ow/min-cut algorithm, a set of edges with the minimum
total weight is found and then returned as the object
boundary. A common problem with the Graph Cut method
is the “small cut” behavior. Since this method tries to
minimize the total edge weights in the cut, it may return
very small segmentations as a result of low contrast, a small
number of seeds or noise. The minimum-cut criterion may
also cause problems by returning solutions in which the
boundary takes a “shortcut” over a protruded section of the
object in an attempt to minimize boundary length.

In the Random Walker method [6], the edge weights are
treated as probabilities (when normalized by node degree)
of a particle at one node traveling to a neighboring node.
Given seeds, one may then compare the probability that a
particle initiating at any node (pixel) travels �rst to the fore-
ground or background seeds and assign that pixel to the cor-
responding label. It was shown in [6] that it is possible to
compute these probabilities for each pixel analytically with-
out any simulation of random walks.

In this paper, we propose a general seeded image seg-
mentation algorithm. We then show that this general algo-
rithm takes the form of either the Graph Cuts or Random
Walker algorithms, depending on the choice of one parame-
ter — The norm by which the solution gradient is computed.
After establishing that the general algorithm will yield these
two image segmentation methods, we proceed to examine a
previously unexplored algorithm resulting from a different
choice of this same parameter.

The paper is organized as follows: In Section2, we give
the general seeded segmentation algorithm on a combina-
torial (graph-based) domain, show that the Graph Cuts and
Random Walker algorithms can both be derived from this
framework and examine the third case suggested. In Sec-
tion 3, we perform a quantitative stability comparison of all
three algorithms and qualitatively compare the segmenta-
tion results on a series of images. We conclude in Section4
with a summary of this framework and the new algorithm,
with suggestions for future work.

2. Method

This section is divided into two parts. In the �rst part, we
will give a general algorithm for seeded segmentation and

Given ForegroundF and BackgroundB Seeds,q 2 R+

Let x  arg min kC
1
2 Ax kq

q =
hP

eij 2 E (wij jx i � x j j)q
i 1

q
,

subject tox(F ) = 1 andx(B ) = 0 .

Output Segmentationsi =

(
1 if x i � 1

2 ;
0 if x i < 1

2 :

Figure 1. The Graph Cuts and Random Walker segmentation algo-
rithms may be viewed as particular instantiations of a more gen-
eral algorithm, termed here as “Algorithm A”. Algorithm A gives
the segmentation results of Graph Cuts whenq = 1 and Random
Walker whenq = 2 . We explore the new algorithm derived in the
q = 1 case.

then show that the Graph Cuts and Random Walker segmen-
tation algorithms are special cases of this general algorithm.
In the second part, we investigate a previously unexplored
third case of the general algorithm.

2.1. A general seeded segmentation algorithm

Given the combinatorial formulation of the Graph Cuts
and Random Walker algorithms, we �rst �x our notation be-
fore proceeding to establish the general algorithm. Agraph
consists of a pairG = ( V; E) with vertices (nodes)v 2 V
andedgese 2 E � V � V , with n = jV j andm = jE j.
An edge,e, spanning two vertices,vi and vj , is denoted
by eij . A weighted graph assigns a value to each edge
called aweight. The weight of an edge,eij , is denoted by
w(eij ) or wij and is assumed here to be nonnegative. The
following will also assume that our graph is connected and
undirected (i.e.,wij = wji ). In this paper, we will employ
an 8-connected lattice as our neighborhood structure.

Consider the following algorithm on an image domain,
V , termedAlgorithm A : 1) Assume that we are given (in-
teractively or via a preprocessor) a set of pixels,F , labeled
foreground and a set of pixels,B , labeled background, such
thatF; B � V; F \ B = ; . 2) Find a solution to

min kC
1
2 Ax kq

q =
hP

eij 2 E (wij jx i � x j j)q
i 1

q
;

s:t : xF = 1 ;
xB = 0 :

(1)
whereA is them � n node-edge incidence matrix de�ned
as

Aeij vk =

8
><

>:

+1 if i = k;
� 1 if j = k;
0 otherwise;

(2)

and them � m matrix C is the constitutive matrix, which
is a diagonal matrix with thesquareweights of each edge
along the diagonal. 3) Assign a set of segmentation labels,



Choice ofq 1 2 1
Name Graph Cut Random Walk This Algorithm
Objective Function

P
eij 2 E wij jx i � x j j

P
eij 2 E w2

ij jx i � x j j2 maxeij 2 E wij jx i � x j j
Obj. Func. Interpretation Boundary Cut Effective Conductance Minimal Lipschitz Extension
Optimization Method Maximum Flow Solution of a Sparse Linear System Shortest Path
Uniqueness Not Unique� Unique Not Unique

Figure 2. Comparison of different algorithms obtained from “Algorithm A” in Figure 1. Uniqueness — Unlike thep = 1 case, arbitrarily
small perturbations of the weights will resolve thep = 1 degeneracy. However, this resolution will be arbitrary.

s : V 7! f 0; 1g such that

si =

(
1 if x i � 1

2 ;
0 if x i < 1

2 :
(3)

This general algorithm is summarized in Figure1. We note
that the above formulation could be interpreted from a con-
tinuous perspective in which (1) is replaced by

min kr  kq
q (4)

where the setsF andB represent internal Dirichlet bound-
ary conditions and the gradient operator is modi�ed by an
inhomogeneous metric tensor that changes spatially in re-
sponse to intensity changes [9]. Note that the above formu-
lation of Algorithm A offers a natural method by which the
Graph Cuts and Random Walker algorithms could be com-
bined in the sense that the corresponding energy functionals
could be added together and jointly minimized.

For many graph based segmentation algorithms [14, 3,
6, 7], the edge weights encode image intensity changes.
A standard weighting function in these algorithms that we
shall employ here is

wij = exp
�

�
q

� jgi � gj j2 + jhi � hj j2
�

; (5)

wheregi indicates the image intensity at pixeli , hi indi-
cates the spatial position of pixeli and� is a free parame-
ter. In the context of (4), these weights would be equivalent
to a spatially varying metric. Note that pixel af�nity could
equally be derived from changes in color, texture, etc.

The de�nition of Algorithm A leaves only one remain-
ing choice — What value ofq should be employed? In the
following sections, we show that the choice ofq = 1 leads
to the Graph Cuts algorithm and the choice ofq = 2 leads
to the Random Walker algorithm. This situation is summa-
rized in Figure2. Following the justi�cation of the above
statements, we proceed to consider the choiceq = 1 . Note
that a unary (data) term is often explicitly included in the
formulation of Algorithm A for various metrics (e.g., in
Graph Cuts [3] or Random Walker [5]). However, since
a data term may be considered from the standpoint of “t-
links” (i.e., a pairwise term between the unary node and a
“phantom” seed), Algorithm A equally applies to the use of
a unary (data) term for any of the three algorithms.

2.1.1 Theq = 1 case — Graph Cuts

If we substituteq = 1 into (1), the second step of Algorithm
A requires the solution of

min jC
1
2 Ax j =

P
eij 2 E wij jx i � x j j;

s:t : xF = 1 ;
xB = 0 :

(6)

The dual formulation of (6) is

max yB ;
s:t : AT y = � F yF + � B yB ;

0 � yij � wij 8eij 2 E;
(7)

where� F;B are vectors of lengthn with 1's in entries corre-
sponding to foreground and background seeds respectively,
and zeros elsewhere.

Upon closer inspection, it can be seen that (7) is the
maximum-�ow problem, whereyB is the total �ow, subject
to the �ow conservation principle (e.g., [12]). Therefore,
formulation (1) gives rise to the min-cut/max-�ow problem
for q = 1 . The primal problem (6) also demonstrates the
minimum cut problem — Minimize a weighted cut, repre-
sented byx, between terminalsF andB . The solution of
(6) will be a binary solution,x i 2 f 0; 1g, due to the totally
unimodular property of the min-cut problem [12]. Since the
solution of (6) will necessarily be binary, the thresholding
step of Algorithm A will have no consequence, and the �-
nal labelling will be equal to the optimal solution of (6), i.e.,
s = x. As a result, the Graph Cuts image segmentation al-
gorithm [3] gives the same solution as Algorithm A when
q = 1 .

2.1.2 Theq = 2 case - Random Walker

It is even clearer to see that theq = 2 case corresponds to
the Random Walker segmentation algorithm. Forq = 2 , (1)
becomes

min kC
1
2 Ax k2

2 =
P

eij 2 E w2
ij (x i � x j )2

= xT AT CAx;
s.t. xF = 1 ;

xB = 0 :

(8)

A minimization of this form is exactly described in the
Random Walker algorithm formulation of [6] (for the case



Figure 3. The solution to theq = 1 and q = 1 cases are not
unique, as illustrated by this graph.F is the foreground node (set
to unity), B is the background node (set to zero). The remaining
node,u, may take any value ranging between[0; 1] without affect-
ing the objective function in (1). For this reason, regularizing the
q = 1 case with aǹ 1 term does not remove the degeneracy and
we therefore use aǹ2 regularizer. Each edge has unity weight.

of two labels). Solution of (8) was shown in [6] to yield
the desired random walker probabilities, which are then
thresholded to produce the foreground/background label-
ing. Therefore, the Random Walker image segmentation
algorithm with two labels gives exactly the same solution
as Algorithm A whenq = 2 .

Hence, Algorithm A is shown to produce the Graph Cuts
and Random Walker segmentation solutions whenq = 1
andq = 2 , respectively. We now proceed to examine the
previously unexplored algorithm that is obtained from Al-
gorithm A by allowingq ! 1 . The resulting segmentation
algorithm is the subject of the remainder of this paper.

2.2. Theq = 1 case

If we let q ! 1 , (1) becomes

limq!1 q

q P
eij 2 E wq

ij jx i � x j jq

= max
eij 2 E

wij jx i � x j j
| {z }

�

limq!1 q

vu
u
t

X

eij 2 E

�
wij

jx i � x j j
�

� q

| {z }
1

= �:

(9)

Consequently, the overall optimization problem may be
written as

min maxeij 2 E wij jx i � x j j;
st xF = 1 ;

xB = 0 :
(10)

This form can be recognized as a combinatorial formula-
tion of the minimal Lipschitz extension [2]. A method for
solving (10) is the subject of the next section.

2.2.1 Solution

In the following sections, letu  v denote a path inG from
nodeu 2 V to v 2 V . Also, let� = max eij 2 E wij jx i � x j j
for a solutionx to (10).

For any path� : F  B , we have the inequalities:
X

eij 2 �

jx i � x j j � j xF � xB j = 1 ; (11)

X

eij 2 �

jx i � x j j �
X

eij 2 �

w� 1
ij �: (12)

Combining these two inequalities yields

� �

0

@
X

eij 2 �

w� 1
ij

1

A

� 1

; 8� : F  B: (13)

A maximum lower bound for� is attained with the short-
est path between a foreground and background seed over the
reciprocal weights (w� 1

ij ).
Let dF

i anddB
i denote the shortest path length from node

vi 2 V to a foreground and background node using recip-
rocal weights respectively.

Theorem 2.1. Let x be de�ned as

x i = min f �d B
i ; 1g: (14)

This potential vector is an optimal solution for(10).

Proof. We begin by checking the boundary conditions
given in (10).

� x i = 1 ; i 2 F . Since� � 1 � dB
i for all i 2 F , �d B

i �
1, which impliesx i = 1 .

� x i = 0 ; i 2 B . For all i 2 B , dB
i = 0 , therefore

x i = 0 .

� wij jx i � x j j � � . Wlog, assumex i � x j , which
implies thatdB

i � dB
j . If x j = 1 , then x i = 1 .

Therefore, this property is readily satis�ed. Assume
otherwise. We know thatdB

i � dB
j � w� 1

ij by the
shortest path property. So, we havewij (x i � x j ) �
wij (�d B

i � �d B
j ) � � .

A practical consequence of Theorem2.1 is that the po-
tential vectorx may be computed inO(m + n logn) time
by �nding dB

i for each node, which requires a single source
(treating all nodes inF as a single node) all shortest paths
computation. Although the above discussion offers a sim-
ple, ef�cient method of �ndingan optimal solution to (10),
this solution is not, in general, unique [2]. It is a matter of
debate as to how ultimately problematic non-uniqueness of
a solution can be. However, from a computational stand-
point, the solution returned for a non-unique functional will
depend on the details of the solver. Since dependency on
solver details dampens the utility of a global optimum, we
will examine the use of regularization to produce a unique
solution. In the following section, we will investigate this
degeneracy issue further.



(a) Blank (uniform) image (b) Image from Figure7

Figure 4. Although thè1 algorithm produces a non-unique solution, the segmentation boundary must lie within a certain “ambiguous
region” that is simple to compute. In these �gures, the red region illustratesthis “ambiguous region” in which the segmentation may
take either a foreground or background label. Regardless of the regularizer, pixels inside the blue region must take a foreground label
and pixels inside the green region must take a background label. Note thatthe blue and green regions always touch at a point that is
halfway along the (weighted) shortest path between the foreground andbackground seeds. The saturated blue and green pixels indicate the
foreground/background seed locations.

2.2.2 Non-uniqueness of the solution

An example of the non-uniqueness of the solution to (10) is
given by the triangle graph given in Figure3. Additionally,
the situation in Figure3 illustrates the degeneracy of the`1

minimization of (6), as well. In this graph, the value ofxu

can take any value between 0 and 1 without affecting the
optimum of (10) or (6). Speci�cally, for anyxu 2 [0; 1],
`1(x) = 2 and`1 (x) = 1 . Hence, there exists an in�nite
number of solutions for these problems and some regular-
ization is required to obtain a unique solution. Regardless
of the regularization method employed, a surprising aspect
of the solution in thè 1 case (with regards to the segmen-
tation) is that some pixels are guaranteed to take the fore-
ground label (have solution greater than1

2 ) while others are
guaranteed to take the background label (have solution less
than 1

2 ). However, there remains an “ambiguous region” in
which the method of regularization determines the labeling.
The next section shows how to calculate these regions for
the`1 algorithm.

2.2.3 Constraints on the Solution

Although the solution of̀ 1 (x) minimization problem is
not unique, there are some common properties in all solu-
tions. First we will bound the range of possible values for
each node.

Theorem 2.2. Let � be the minimum value of`1 (x). Then,
for any potential vectorx satisfying the boundary condi-
tions in(10), with wij jx i � x j j � � , we have

1 � �d F
u � xu � �d B

u ; 8u 2 V: (15)

Proof. For each nodeu 2 V , let � F and � B denote the
shortest paths fromF andB to ui respectively. Then

X

eij 2 � F

(x i � x j ) = 1 � xu ; (16)

X

eij 2 � F

(x i � x j ) �
X

eij 2 � F

jx i � x j j � �d F
u : (17)

Combining these inequalities yields

�d F
u � 1 � xu ) xu � 1 � �d F

u : (18)

The same mechanism allows for derivation of the other in-
equality.

These inequalities allow us to �nd lower and upper
bounds on the segmentation areas. In any optimal solution
to (10), x, a nodeu will always be classi�ed as background
if �d B

u � 1
2 and as foreground if�d F

u � 1
2 . This is an

important property, as it allows us to put bounds on the
possible segmentations in an ef�cient way. Additionally,
these bounds demonstrate that the`1 algorithm avoids the
shrinking problem associated with Graph Cuts.

The above analysis also provides another property of the
solution to (10). This property is that the solution for any
nodes along the shortest path fromF to B is �xed, regard-
less of the regularization method employed. Formally, if
dF

u + dB
u = � � 1, meaning that nodeu lies on a shortest path

betweenF andB , then�d B
u = � (� � 1 � dF

u ) = 1 � �d F
u ,

which implies thatxu is �xed. The ambiguous region is il-
lustrated in Figure4 for three images: A blank (uniform)
image, a weak boundary image and a natural image. Note
that an 8-connected lattice was employed.
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Figure 5. Sensitivity analysis of segmentation to the number of
seeds. Because of the “small cut” phenomenon, the Graph Cuts
segmentation is the least robust to the quantity of seeds, whereas
regularized̀ 1 algorithm performs the best.

2.2.4 Regularization

In this section, we will examine various methods of regular-
izing (10) to yield a unique solution. We will examine the
use of the other two norms (`1 and`2) as regularizers for
solving the degeneracy problem. Employing the other two
norms as regularizers offers one avenue for combining the
`1 algorithm with Graph Cuts or Random Walker.

`1 Regularization: A natural choice of regularization is
to �nd the solution which, among all solutions with̀1 (x)
minimum, also minimizes̀ 1(x). It is possible to use a
`1(x) regularizer ef�ciently, since the problem may be re-
duced to a minimum cost network �ow [1]. Unfortunately,
this approach does not solve the degeneracy problem, as
illustrated with Figure3. Here, it can be seen that all so-
lutions minimizing`1(x) have`1 (x) = 1 (the minimum),
which means this solution is not unique.

`2 Regularization: A second approach to solving the
degeneracy problem of (10) can be found by using an idea
similar to the one presented above. We search for the solu-
tion which has the minimum̀1 value and minimizes̀2. If
we rewrite this as an optimization problem:

min xT AT CAx;
s:t : xF = 1 ;

xB = 0 ;
wij jx i � x j j � �; 8eij 2 E;

(19)

which is a quadratic programming problem. Note that since
we assume that the graphG is connected, the addition of
boundary conditionsxF = 1 andxB = 0 causeAT CA to
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Figure 6. Sensitivity analysis of segmentation to the placement of
seeds. In this case, the regularized`1 algorithm is the least robust
to seed location within an object, while Graph Cuts is the most
stable. However, note that the difference in stability in this exper-
iment is much less than the difference in stability exhibited in the
seed quantity experiment of Figure5.

be positive de�nite [6]. If we assume that there exists two
different optimal solutions,x1 andx2, then this implies that
everyx = �x 1 + (1 � � )x2; 8� 2 (0; 1) is also an optimal
solution. Such a situation would imply thatAT CA is still
singular with the foreground and background constraints,
which is a contradiction. Therefore the solution obtained
by `2 regularization is indeed unique. This`2 regulariza-
tion is used to generate all segmentation results for the`1

algorithm in the next section.

In order to solve the quadratic programming problem of
(19), we used a conjugate gradient based active set method
[11]. All results for `2 regularized̀ 1 minimization prob-
lem are obtained using this solver.

3. Results

In this section, we compare the segmentations obtained
for all three seeded image segmentation algorithms dis-
cussed in this paper: Graph Cuts (`1 minimization), Ran-
dom Walker (̀2 minimization), and̀ 1 minimization with
`2 regularization. In all images,� is taken as502 for the
edge weight computation given in (5). We begin by quan-
titatively comparing the stability of the three algorithmsto
seed quantity and seed location. We then compare the seg-
mentations obtained from these algorithms on real images
and draw qualitative comparisons.



3.1. Quantitative Validation

An interactive segmentation algorithm should have two
properties: 1) The segmentation should not require an ex-
cess number of seeds, since the number of seeds is roughly
proportional to the amount of work required by a user (or
prior knowledge of a preprocessor), 2) The segmentation
should not be overly sensitive to where the seeds are placed
within an object.

In this section we compare the performance of Algo-
rithm A for various choices ofq with respect to seed quan-
tity and placement. For the tests, we placed foreground and
background seeds on a set of 28 images such that roughly
the same segmentation was obtained for all three choices
of q (using the same seeds and graph weights for all three
algorithms).

The sensitivity of each algorithm with respect to the
number of seeds was tested with the following procedure:
Given the initial segmentation, we �lled the foreground
and background with foreground/background seeds respec-
tively. Both the foreground and background seeds were then
progressively eroded. After each erosion, the segmentation
was recomputed and compared to the original segmenta-
tion. The process terminated when the erosion operation re-
moved all of the foreground or background seeds. This pro-
cedure produces seeds that progressively resemble a skele-
tonization of the object/background.

In order to evaluate the sensitivity of each algorithm to
the effects of seed placement within an object, we adopted
the following procedure: Given the initial segmentation, the
locations of the seeds were shifted as a group in a random
direction with random magnitude. The variance of the mag-
nitude ranged from 1% to 8% of the image size. Any sam-
ple in which the perturbation caused the foreground (back-
ground) seeds to enter the background (foreground) was re-
jected and then retried until a valid perturbation was ob-
tained. For each magnitude variance, we took 40 samples
in which 20 samples shifted the foreground seeds and 20
samples shifted the background seeds.

The similarity between the initial and perturbed segmen-
tations were measured using a normalized overlap

Overlap =
jA \ B j
jA [ B j

(20)

whereA andB are sets including the pixels within the ob-
ject for two different segmentations.

The results for segmentation sensitivity to seed quantity
are given in Figure5. It is not surprising that Graph Cuts
exhibits the least robustness to seed quantity, since a small
number of seeds will result in a smallest cut that encom-
passes only the seeds. Unfortunately, in practice, the num-
ber of seeds placed by a user is likely to be closer to 10%,
which still corresponds to seeding one in every ten pixels
in the object. In contrast, thè1 algorithm exhibits the

Graph Cuts Random Walker Regularized`1

Figure 7. Segmentation results on real images using an 8-
connected lattice. The segmentation boundary is outlined in red.
Edge weights were equal for all algorithms in these experiments.
Common problems associated with Graph Cuts are the tendency
to “shortcut” the boundary (as in the top image) and a tendency to
be overly committed to high contrast boundaries (as in the bottom
image). A common problem associated with the Random Walker
algorithm is the tendency to produce segmentations that are overly
likely to provide balance between the foreground and background,
which may cause the foreground segment to be too large. In con-
trast, thè 1 solution does not suffer from the “small cuts” (short-
cut) problem, nor is it overly committed to balanced partitions.

greatest robustness to the number of seeds, while the Ran-
dom Walker algorithm falls somewhere in the middle. One
might conclude from these results that Algorithm A exhibits
greater robustness to the number of seeds asq increases.

The results for segmentation sensitivity to seed location



within the object are given in Figure6. In this test, Graph
Cuts demonstrates the greatest robustness to seed placement
within an object. This result is not surprising, since one
might expect that the cost of the object boundary is gen-
erally lower than internal boundaries and therefore the lo-
cation of the source/sink within the object should not have
any effect. In contrast, thè1 algorithm exhibits the least
robustness to seed placement within an object. This effect
may be explained by the inherent dependence of the`1 so-
lution on the distance from the given seeds. As before, the
Random Walker algorithm exhibits a level of robustness to
seed placement in between the other two algorithms, lead-
ing to the conjecture that Algorithm A exhibits less robust-
ness to seed placement within an object asq increases. We
note that the overall sensitivity of all three algorithms to
seed placement (roughly 10%) is much less than the overall
sensitivity of all three algorithms to seed quantity (roughly
60%).

3.2. Qualitative Validation

In this section, we employ all three algorithms to seg-
ment real images. The results of these segmentations are
displayed in Figure7. Qualitatively, the neẁ1 algorithm
produces “tighter” segmentations than the Random Walker
algorithm. Additionally, thè 1 algorithm does not “short-
cut” objects in the manner exhibited by Graph Cuts, as seen
in the top image in Figure7.

4. Conclusion

In this work, we presented a general seeded image seg-
mentation algorithm called “Algorithm A”, which is based
on the minimization of̀q norms. We showed that two popu-
lar seeded image segmentation algorithms, Graph Cuts and
Random Walker, correspond to the parameter choices of
q = 1 andq = 2 in Algorithm A. We then examined the seg-
mentation algorithm de�ned by choosingq = 1 Although
the solution of this problem is degenerate, we showed that
it is possible to produce a minimal and maximal segmen-
tation, depending on the choice of regularization. In order
to solve the associated degeneracy problem, we proposed
regularization with aǹ2 energy.

We performed two quantitative comparisons of the seg-
mentations found by thè1 algorithm to the Graph Cuts
and Random Walker segmentation algorithms. These com-
parisons measured the relative robustness of the segmenta-
tion results to seed quantity and seed location within the
object. The neẁ 1 algorithm exhibited the greatest ro-
bustness to seed quantity, but the least robustness to seed
placement. However, the three algorithms had more simi-
lar levels of seed placement robustness (within 10% at the
highest level) than seed quantity robustness (within 40% at
the highest level). Based on these results, one could spec-

ulate that the robustness of Algorithm A to seed quantity
increases with increased value ofq, while the robustness of
Algorithm A to seed placement decreases with increasedq.

A qualitative comparison of the image segmentation
results was also performed to contrast the relative seg-
mentations of the various algorithms. The new algorithm
was shown to �nd “tighter” segmentations than the Ran-
dom Walker algorithm while not suffering from the prob-
lem of “shortcutting” the object that is associated with the
minimum-cut criterion of the Graph Cuts algorithm.

Future work will examine specialty solvers for the`2

regularized`1 minimization and look at the segmenta-
tions obtained from jointly minimizing combinations of the
Graph Cuts, Random Walker and`1 energy terms from the
“Algorithm A” framework.
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