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Abstract

We present a new approach for the incorporation of

shape information into a segmentation algorithm. Unlike

previous approaches to the problem, our method requires

no initialization, is non-iterative and finds a steady-state

(i.e., global optimum) solution. In the present work, we

are specifically focused on the segmentation of rectilinear

shapes. The key idea is to use the fact that certain shape

classes optimize the ratio of specific metrics, which can be

expressed as graph Laplacian matrices applied to indicator

vectors. We show that a relaxation of the binary formula-

tion of this problem allows a global solution via generalized

eigenvectors. The approach is tested on both synthetic ex-

amples and natural images.

1. Introduction

In recent years there has been a trend toward formula-

tion of image segmentation algorithms as variational prob-

lems in which the minimal energy solution corresponds to

the desired segmentation. A primary advantage of a vari-

ational formulation, in the context of shape segmentation,

is the availability of an energy that provides a measure of

closeness between the segmentation and the desired shape.

This measure is extremely important since occlusion, noise

or image deformation often distorts the object in the image

such that an exact match with the desired shape is impossi-

ble. When an exact match is impossible, a variational for-

mulation allows the algorithm to find a segmentation of the

“best” match, with respect to the energy functional.

Variational approaches in the literature can be roughly

divided into two groups: 1) Functionals that require an ini-

tial solution and produce iterative improvement toward a lo-

cal minimum (usually via gradient descent), 2) Functionals
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for which a global minimum is efficiently achievable. The

first type of approach is necessary when the formulation of

the relevant functional is nonconvex, nonlinear or nondiffer-

entiable. However, when possible, functionals of the second

type are generally preferred since problems with initializa-

tion, local minima and the particulars of optimization are

avoided. Although the first category encompasses many al-

gorithms, the second class seems to have been almost uni-

versally phrased in the language of discrete optimization on

a graph (e.g., [15, 11, 2, 10]).

The addition of high-level shape information has long

been recognized to benefit more general low-level segmen-

tation methods for particular segmentation tasks. Previous

efforts to incorporate shape information into variational al-

gorithms have all been drawn from the first class of ap-

proaches in which iterative improvements are made toward

a local minimum. Examples of this type of algorithm in-

clude active shape models [4], OBJ CUT [13], level sets

[6] etc. In contrast, the algorithm proposed here belongs to

the second type of variational algorithm in the sense that it

will be possible to achieve a global minimum (of the binary-

relaxed problem) without initialization. As with the major-

ity of other algorithms belonging to the second type, we

adopt a combinatorial (graph) formulation. We note that

while the work of Freedman [7] also develops a variational

shape-based algorithm with a global optimum (although the

energy function is sampled at various scales), in contrast

to the present approach, Freedman’s method requires user

interaction (in the form of seeds) and is not translation in-

variant. Additionally, the work of Werner [16] defines rec-

tilinear shapes on a graph as the optimum of an energy with

a global minimum (of the relaxed problem). Unfortunately,

this approach has no tolerance to even slight rotation and is

extremely computationally intensive.

The particular preferred shape that we target for seg-

mentation in this paper is the rectilinear shape. Rectilin-

ear shapes occur in many practical segmentation problems
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(a) 4-unit triangle. ℓ1

perimeter: 16, ℓ2 perimeter:

13.6569

(b) 4-unit square. ℓ1

perimeter: 16, ℓ2 perimeter:

16

(c) Cut-measured perimeter

on L1 graph: 16

(d) Cut-measured perime-

ter on L1 graph: 16

(e) Cut-measured perimeter

on L2 graph: 11.8317

(f) Cut-measured perimeter

on L2 graph: 13.9192

Figure 1. A rectilinear shape is known to minimize the ratio of the perimeter measured with an ℓ1 metric and the perimeter measured

with an ℓ2 metric [18] as shown in the top row. It is possible to measure the perimeter of a object, expressed as a cut, with respect to

various metrics with arbitrary accuracy by adjusting the graph topology and weighting [3]. The Opposing Metrics strategy for segmenting

rectilinear shapes is to look for the segmentation that minimizes the cut with respect to one graph, L1, while maximizing the cut with

respect to a second graph, L2.

associated with applications involving man-made structures

such as buildings, roadsigns or factory environments. We

emphasize that we are looking for the shape that best fits the

rectilinear energy function, rather than strictly axis aligned

rectangles with a known scale or aspect ratio. If a scale, ro-

tation and aspect ratio were known, then a Hough-type algo-

rithm could be used for the segmentation. Even if one were

willing to endure the computational expense of a search

over all scales, rotations and aspect ratios with a Hough-

type approach, such a method would not return the “most

rectilinear” object in the image, in the event that there was

no object that was strictly rectilinear.

This new variational algorithm has the feature that it is

uninitialized, produces a global minimum (of the binary-

relaxed problem), is efficiently optimized and provides a

measure of the rectilinearity of the resulting segmentation.

As with other algorithms of the second class of variational

algorithms presented above, our algorithm is formulated on

a graph and takes advantage of discrete optimization tech-

niques. Due to the combinatorial formulation, it is possible

to precisely measure the effect of resolution (scale) on the

effectiveness of the shape information.

Our algorithm makes use of previous work on rectilinear

shape measures [18] to establish rectilinearity as the ratio

of the object perimeter measured by an ℓ1 and an ℓ2 met-

ric. Since the rectilinearity measure is derived from con-

trasting the measure of the object perimeter by two differ-

ent metrics, we term the algorithm the opposing metrics

(OM) algorithm. The object segmentation is represented

by an indicator vector on the set of nodes (pixels) with a

perimeter measured by the cut with respect to these met-

rics, as represented by different graph topologies (using the

results in [3]). The binary formulation is then relaxed to

allow a global optimization to solve for the indicator vec-

tor. The resulting optimization may be done by a general-

ized eigenvector computation. Although eigenvector com-

putations are well-known in the context of normalized cuts

segmentation [15], we stress that they develop their algo-

rithm from a different functional and produce a different

segmentation from our algorithm that does not prefer rec-

tilinear shapes. On a final note, we would like to mention

that this formulation also extends to higher dimension in the

sense that 3D cubes could also be used as preferences for a

3D segmentation algorithm. Due to space limitations, this

3D material will not be further explored in the present work.

2. Method

In this section, we begin by defining a rectilinearity mea-

sure, provide a representation of the segmentation that per-

mits optimization, formulate the segmentation algorithm

with the data term and discuss details of optimization.

2.1. Rectilinearity measure

In order to incorporate shape information into a varia-

tional segmentation algorithm, it is first necessary to pro-

vide a method for measuring how well a given segmentation

result fits the shape model. Measures of rectilinearity have

been previously proposed, due to the importance of rectilin-

ear segmentation in real-world applications. One such mea-

sure was introduced by Zunic and Rosin [18] who showed

that the only class of shapes which minimize the following

ratio

Q(P ) =
Per1(P )

Per2(P )
, (1)

are rectilinear shapes (with respect to the specified X and

Y axis). Here Per1(P ) denotes the ℓ1 perimeter of shape P

according to the specified X and Y axis. Similarly, Per2(P )
denotes the perimeter of shape P with the ℓ2 metric. For-

mally,

Per1(P ) =
∫

|u′(t)| + |v′(t)|dt, (2)

Per2(P ) =
∫

√

u′2(t) + v′2(t)dt, (3)

for some parametrization u(t), v(t) of the shape boundary

P . We note that (1) does not provide a rotationally invariant

measure of rectilinearity (i.e., it is assumed that the rectan-

gular object roughly aligns with the image axes). This point



will be revisited again from a practical standpoint in Section

3.2. Our goal now is to formulate our segmentation in such

a way that the shape minimizes (1) while also respecting the

image data.

2.2. Representation

The formulation of our algorithm will be on a graph. A

graph consists of a pair G = (V,E) with vertices (nodes)

v ∈ V and edges e ∈ E ⊆ V × V , with N = |V | and

M = |E|. An edge, e, spanning two vertices, vi and vj ,

is denoted by eij . A weighted graph assigns a value to

each edge called a weight. The weight of an edge, eij , is

denoted by w(eij) or wij and is assumed here to be nonneg-

ative. The degree of a vertex is di =
∑

w(eij) for all edges

eij incident on vi. The following will also assume that our

graph is connected and undirected (i.e., wij = wji). An

image may be associated with a graph by identifying each

pixel with a node and defining an edge set to represent the

local neighborhood relationship of the pixels. The edge set

(neighborhood) structure will be used to represent the op-

posing metric spaces.

As with other several other graph-based segmentation al-

gorithms [15, 11], we represent our desired segmentation as

an indicator vector that may then be solved for. Define an

indicator vector representing a segmentation as

xi =

{

1 if vi is in the object,

0 if vi is in the background.
(4)

and the graph Laplacian matrix, L, as

Lij =











di if i = j,

−wij if vi and vj are adjacent nodes,

0 otherwise,

(5)

where Lij is indexed by vertices vi and vj .

Given a segmentation (represented by indicator vector

x), the weighted cost of the cut (perimeter), C, may be writ-

ten as

C = xT Lx =
∑

ij

wij(xi − xj)
2. (6)

It was shown by Kolmogorov and Boykov that we may

use (6) to give the perimeter of the object with respect

to various metrics by designing the appropriate weight-

ing/topology [3]. In the following, we assume that the

pixel (node) spacing is at one unit in each direction. To

encode ℓ1 in the graph weighting/topology, we employ a

four-connected grid with weighting

wij =

{

1 If vi and vj are adjacent in the grid,

0 Otherwise.
(7)

Figure 1 illustrates that this design produces the ℓ1 measure

of the object perimeter when measured using (6). We will

denote the Laplacian matrix for this topology/weighting as

L1.

Similarly, Boykov and Kolmogorov [3] showed that the

length of the boundary using any Riemannian metric can

be approximated with an appropriately weighted graph.

Hence, if we let L2 denote the Laplacian matrix of the ℓ2
metric, limδ→0 xT L2x = Per2(Ωx) for grid spacing δ and

object represented by x. In the remainder of this work, we

define the pixels to have unit spacing, i.e., δ = 1. If we

let Ek ⊂ E indicate the edge family incident on node vk,

where all edges are sorted according to their angle φi, the

weight of each edge is computed from [3] as

wi =
∆φk

2|ei|
, (8)

for ei ∈ Ek. Here, ∆φk stands for the angle between two

edges in Ek, and |ei| is the (Euclidean) length of this edge.

Each node is connected to all of its neighbors within a radius

R. From [3] we know that increasing R increases the accu-

racy of the approximation of the Euclidean measurement of

perimeter via cuts. In Section 3.2 we show that a sufficient

approximation of the Euclidean metric for our purposes is

obtained by employing R = 3–4.

Therefore, in terms of an indicator vector on a graph, we

may rewrite (1) as

Per1(Ωx)

Per2(Ωx)
≈ xT L1x

xT L2x
. (9)

An example of the graphs representing L1 and L2 are given

in Figure 1 along with sample ratios for a triangle and a

rectangle. As desired, the rectangle has a smaller ratio.

Given the above definitions of the Laplacian matrix rep-

resenting ℓ1 and ℓ2 perimeters, we may now define the com-

binatorial formulation of (10) for rectilinear shapes. Specif-

ically, the segmentation represented by x that optimizes

arg min
x

xT L1x

xT L2x
, (10)

subject to
[

x ∈ {−1, 1}N
]

will have a rectilinear shape.

2.3. Image segmentation with rectilinear shape
preference

In the previous section, we showed that it is possible to

provide a representation of the segmentation (given as an in-

dicator vector) that allows the measure of the rectilinearity

of that segmentation. Of course, rectilinearity alone is in-

sufficient to find a rectilinear shape in a particular image —

image data must also be incorporated. Our design combines

the shape and data information together to guide the algo-

rithm to look for a segmentation that fits data while favoring

a rectilinear shape.



To incorporate image information into this segmentation,

we adopt an image gradient based approach similar to [5].

Each edge weight of the L2 graph is multiplied with the

following term

w̃ij = exp
β
η

max Gradient(eij) . (11)

Here max Gradient(eij) is intended to indicate the max-

imum gradient magnitude along the line spanned by edge

eij (see [5] for details). The value of β > 0 is a free pa-

rameter and η represents the normalization term such that

η = maxeij
Gradient(eij).

Since we are maximizing with respect to L2, this mod-

ulation of the edge weights forces the segmented object to

favor boundaries that align with the image intensity gradi-

ents. If the desired application involved the segmentation of

textured or colored rectilinear shapes, the gradient of these

values would be used in evaluating (11).

2.3.1 Handling the image borders

One concern with the above formulation is that an object

segmentation sharing its boundary with the image border

has no penalty, i.e., there is no cost associated with label-

ing a node on the border as foreground or background. This

situation encourages the segmented object boundary to co-

incide with the image borders. Since objects sharing its

boundary with the image border should not be favored over

interior objects, we add a term representing the image bor-

der to (10) in the following way:

arg min
x

xT (L1 + γIb)x

xT L2x
, (12)

where Ib is a diagonal indicator matrix for nodes on the

borders.

2.4. Optimization

In the previous sections, we have developed the formu-

lation in (10) as a method by which a rectilinear, data-

respecting object may be segmented from an image. We

turn now to the question of how to solve for the segmen-

tation x. Although both the numerator and denominator of

(10) are convex functions, optimization of the ratio is non-

trivial. In this section, we first discuss a purely combinato-

rial approach to the optimization before settling on a relax-

ation of the binary formulation in order to find a minimum.

2.4.1 Rank-1 Relaxation

Following [12], a natural approach to the optimization of

(12) might be via Semi-Definite Programming. Although

faster methods have been developed for SDP via approxi-

mation algorithms [8], such an approach appears to be too

slow for practical implementation of the OM algorithm.

Our implementation of the approximation method of [8] re-

quired roughly two hours to complete the computation for a

40 × 40 image. Therefore, practical realities insist that we

pursue another technique for minimizing (12).

2.4.2 Binary relaxation

A common approach taken to the optimization of a binary

formulation of ratios has been to relax the binary constraint

in order to provide a method for global optimization [15,

11]. Although it is difficult to analytically relate the solution

of the relaxed problem to the solution of the binary problem,

empirical evidence shows that generally a good solution is

found [15, 11].

In order to solve (12), we relax the integer constraint and

allow the xi’s to take continuous values over the real line.

Noting that a relaxed (12) is the Rayleigh quotient, the opti-

mal value of (12) is achieved by the generalized eigenvalue

and eigenvector pair λ, x of equation L1x = λL2x corre-

sponding to the smallest nonzero generalized eigenvalue.

Eigenvector computations of the graph Laplacian for

segmentation are well known to the vision community fol-

lowing the introduction of the popular Normalized Cuts al-

gorithm [15]. We wish to stress that our OM method dif-

fers significantly from the Normalized Cuts approach since

Normalized Cuts demands computation of eigenvectors of

the (normalized) Laplacian matrix, while the OM method

requires computation of a generalized eigenvector (with re-

spect to another Laplacian defining a different metric). This

difference between the algorithms accounts for the fact that

the OM method pursues rectilinear objects while Normal-

ized Cuts does not.

2.4.3 Selecting Threshold

After having obtained a real-valued solution to (10), we fol-

low previous work (e.g., [15, 11]) and produce a binary seg-

mentation by finding the threshold of the solution x that

minimizes (12). Due to the additional boundary term, we

have to check both S = {i|xi ≥ τ} and S̄ = {i|xi ≤ τ},

and report the higher objective value. It should be noted

that since this operation takes linear time, the overall time

complexity is not affected [11].

2.4.4 Multiple Rectilinear Object Segmentation

Although the remaining eigenvectors give a solution for K-

way segmentation in the case of the normalized cut method

[17], it is not possible to recover two overlapping objects

with such a device. Since segmentation of overlapping rect-

angles is highly desirable in our case (e.g., see Section 3.1),

we must look beyond the remaining eigenvectors for this

purpose. One method of addressing this issue is given by



(a) Original image (b) 1st segmentation (c) 2nd segmentation (d) 3rd segmentation (e) 4th segmentation

Figure 2. Proof of concept. Given the above image, the OM algorithm immediately segments the square without any initialization. Using

the device for choosing the next “most rectilinear” object, the objects are chosen in order of how well they optimize (12). This ordering is

seen to be: Square, triangle, circle, diamond.

(a) Overlapping circle

and square

(b) Minimum general-

ized eigenvector

(c) Segmentation

(shown in red)

Figure 3. Another example of the algorithm employing the shape

preference while also fitting the image data. In this case, a circle

and square of the same intensity were joined and the OM algorithm

was applied to the image. The result is a decomposition of the

object into its constituent parts.

the following device: After computing and discretizing the

current segmentation, edges of L2 are separated according

to whether or not they lie on a previous cut. The segmen-

tation is performed a second time on the full image with

the following two modifications: 1) The η for each edge

group is computed separately, 2) The edge weights in the

cut group are additionally multiplied with a decaying con-

stant 0 ≤ ν < 1. An example of using this device for

segmenting multiple rectilinear objects is given in Section

3.1.

2.4.5 Computation

The primary computational burden of this method is the

solution of the generalized eigenvectors. The most ob-

vious approach is to find the Cholesky Decomposition of

L1 + γIb = AT A (since (L1 + γIb) is positive definite),

solve for the maximum eigenvector, y, of
(

A−1
)T

L2A
−1

and then recover the solution for the original problem by

solving Ax = y.

In order to compute the Cholesky decomposition of ma-

trix L1 + γIb, we employ the AMD package of [1] to find

a permutation of this matrix which is likely to produce a

sparser decomposition. After this step, we compute the

Cholesky decomposition (see [9]), and solve the resulting

sparse eigenvalue problem with ARPACK (see [14]). The

mean time required to segment two objects using the device

from Section 2.4.4 in MATLAB was 11.2 seconds for the

natural images displayed in Section 3. All of these images

were of size 100 × 100.

2.5. Summary

The OM algorithm may be summarized in the following

steps:

1. Find weights from the image using (11).

2. Build the L1 and L2 matrices as defined by (5) with the

geometric weights given by (7) and (8), respectively.

3. Multiply the L2 weights modified to reflect the image

content via (11).

4. Optimize (12) by solving the generalized eigenvector

problem (L1 + γIb) x = λL2x.

5. Choose a threshold of the resulting eigenvector that

minimizes (12) to obtain a final segmentation.

3. Results

In this section, we will begin by showing a proof of con-

cept. As a proof of concept, we show that the algorithm will

prefer rectilinear shapes, that it will find a rectilinear shape

in the presence of weak or occluded boundaries and that the

device for finding multiple rectilinear shapes will work. Af-

ter establishing proof of concept, we analyze the behavior

of the algorithm with regard to resolution (scale) and rota-

tion. Finally, we illustrate the behavior of the algorithm on

natural images.

3.1. Proof of concept

The first question that we address is whether or not the

algorithm will choose a rectilinear shape from among a col-

lection of objects in an image. Figure 2 shows the result of

this experiment. The square is initially chosen by the OM

algorithm. Using the above method for finding a K-way

segmentation, the other objects are chosen in order of how

well they optimize (10). In the case of the image in Figure

2, this ordering is: Square, triangle, circle, diamond.



(a) Overlapping rectangles (b) 1st segmentation (c) 2nd segmentation (d) 3rd segmentation

Figure 4. Illustration of the device introduced in Section 2.4.4 to segment multiple (even overlapping) rectilinear objects. Note that the

order in which these rectangles are segmented is driven by their relative sizes and contrasts.

(a) Kanizsa Square (b) Minimum general-

ized eigenvector

(c) Segmentation

(shown in red)

Figure 5. The classic demonstration of a prior overriding image

data is in the segmentation of the Kaniza examples with illusory

boundary. In this figure, we demonstrate that the OM algorithm

preference for rectilinear shapes causes it to find the (illusory)

square, even though large portions of the boundary are absent.

The proposed segmentation algorithm finds a segmenta-

tion that exhibits a tradeoff between image data and a recti-

linear shape preference. It is precisely the situation in which

the image data is unreliable that the shape prior becomes

valuable. We perform two experiments to demonstrate that

the OM method will produce the correct segmentations un-

der weak data conditions. The first experiment is to run

the OM algorithm on the classic weak-boundary rectilinear

shape — The Kaniza square. Figure 5 demonstrates that

the OM algorithm will correctly find the Kaniza square, de-

spite the fact that most of the square boundary is completely

missing. The second experiment consists of applying the

OM algorithm to an object formed by joining a square to a

semicircle with the same intensity. Figure 3 demonstrates

that the OM algorithm successfully decomposes the image

into its constituent parts.

In Section 2.4.4, a method was given for segmenting

multiple, overlapping objects in a single image, using the

OM approach. In Figure 4 we verify the correctness of this

approach.

3.2. Analysis

Shape algorithms are often analyzed from the perspec-

tive of translation, scale and rotation invariance of the pre-

ferred shape. The translational component is implicitly cap-

tured in the OM algorithm, since the graph weights reflect

the local intensities, allowing the algorithm to “search” for

the best rectilinear shape, regardless of its location in the

image.

Our first goal is characterize the dependence of the

OM formulation on the scale (resolution) of the rectilinear

shape. Scale invariance of any shape algorithm is ultimately

limited by the image resolution, since it is impossible to dis-

tinguish a one-pixel circle from a one-pixel square, triangle

or any other shape. However, due to the combinatorial for-

mulation of our shape criterion (10), it is possible to di-

rectly measure how the resolution affects the rectilinearity

measure and, consequently, the effect on the segmentation

preference. Figure 6 shows the dependence of the ratio L1

L2

on the resolution of a square for different approximations

(neighborhood size) of the L2 perimeter metric (graph). It

may be seen from Figure 6 that there is a weak preference

for larger rectilinear shapes, but the strength of this prefer-

ence is strongly diminished after the square has reached a

size of roughly 50–100 pixels on each side. Additionally,

we see from Figure 6 that a neighborhood of size three or

four is sufficient to approximate the Euclidean (L2) metric.

As expected, an increased neighborhood size and square

size drive the metric ratio toward unity.

Rotation invariance is particularly difficult to study on a

discretized object, since the rotation operation is much eas-

ier to define in the continuum. However, in the present case,

it is clear that the measure of rectilinearity that we employ

is only minimized when the rectilinear shape is axis-aligned

[18]. Since real images are rarely so well behaved, it is im-

portant to study the effects of rotation on the algorithm be-

havior. In order to study the effect of rotation, we designed

the following test: We run the object selection test of Fig-

ure 2 with the square progressively rotated and determine

the point at which the segmentation chooses another object.

This “switch point” may be solved for analytically by solv-

ing for the rotation of a square that causes a circle to have a

smaller objective ratio, as expressed in (10). For a circle of

radius r, the perimeter ratio is

Per1
Per2

=
8r

2πr
=

4

π
. (13)

For a square with side length 2r rotated Θ degrees, the



Figure 6. The combinatorial formulation of our shape criteria al-

lows a direct calculation of the effect of resolution (scale) on the

shape measure. This plot shows the dependence of the shape mea-

sure, L1

L2
, on Euclidean approximation (neighborhood size) and

resolution for squares of increasing size. This experiment demon-

strates that it is sufficient to use an L2 graph to approximate the

Euclidean metric by employing neighborhood sizes that connect a

pixel to all neighboring pixels at a distance of three or four pixels.

Additionally, this experiment also shows that a rectilinear shape

consisting of roughly 50–100 pixels is sufficient to drive selection

by the algorithm.

perimeter ratio is

Per1
Per2

=
8r

8r(sin Θ + cos Θ)
=

√
2

2 sin(Θ + π
4 )

. (14)

Equating (13) and (14) yields Θ ≤ 19◦. Therefore, one

would expect that a rotation of 19◦ degrees would cause the

circle to be chosen instead of the rotated rectangle. Exper-

imentally, we created a 100 × 100 image consisting of a

square and circle, and empirically discovered that the circle

segmentation is preferred to the rotated square at approxi-

mately 17◦ degrees (with an L2 graph of neighborhood size

two). Therefore, given the image resolution and the ℓ2 ap-

proximation of the L2 graph, the results generally agree

with the prediction from theory (within two degrees). As

a result of this experiment we would expect the algorithm

to correctly find rectilinear shapes that were roughly axis-

aligned, within about 17◦. We note that, if strict rotation in-

variance was essential for a particular application, the above

analysis suggests that one could re-apply this algorithm af-

ter roughly ten rotations of the image to capture the rotated

rectilinear shape. To keep the remaining exposition as sim-

ple as possible, such a device will not be employed in the

experiments.

3.3. Real Images

The ultimate test of the utility of an algorithm is its abil-

ity to operate on natural images. Rectilinear shape segmen-

tation most often arises for applications associated with the

segmentation of objects in man-made environments, such

as buildings, roadsigns or factory environments. In this sec-

tion, we demonstrate the response of the OM algorithm to

several natural images containing rectilinear shapes. Figure

7 shows the result of this experiment. Note that the objects

range in size, contrast and rotation.

4. Conclusion

In this work, we described a new approach for embed-

ding shape information into an image segmentation task. In

contrast to previous approaches in the literature, our method

produces a global optimum (of the relaxed problem), is non-

iterative, steady-state and requires no initialization. Addi-

tionally, the algorithm is set in a combinatorial framework.

The basis of the Opposing Metrics method is to connect the

fact that certain shapes optimize the ratio of perimeters as

measured by different metrics [18], with the fact that such

metrics may be represented by the weighted connectivity of

the graph [3]. The result is a generalized eigenvector prob-

lem, which may be solved with standard algorithms. De-

spite the continuous-valued relaxation of the binary formu-

lation, we have demonstrated that the algorithm behaves in a

manner consistent with the motivating formulation. Specifi-

cally, the algorithm correctly prefers rectilinear shapes over

competing objects and is capable of using the shape prefer-

ence to “complete” boundaries in the presence of missing,

weak or noisy boundaries. Additionally, the device intro-

duced to segment multiple, possibly overlapping, rectilinear

shapes behaves as desired.

Future work will be directed at the questions raised by

this approach:

1. What classes of shapes may be established as the ratio

of their perimeters, as measured by different metrics?

2. Is it possible to employ a combinatorial optimization

algorithm to minimize (10) that does not involve a re-

laxation of the original binary formulation?

3. What properties of a shape may be represented via

functions of indicator vectors, such that it is possible

to find a steady-state solution? Normalized cuts [15]

and the isoperimetric algorithm [11] use the notion of

object volume, while we make use here of the mea-

surement of perimeter length via different metrics. Are

these the only choices? If not, what other shape prop-

erties may be incorporated?



Original First Second

Image Segmentation Segmentation

Figure 7. Segmentations of natural images using the OM algo-

rithm. The second segmentation is produced using the device in-

troduced in Section 2.4.4. For all images γ = 1× 10
−2.

References

[1] P. Amestoy, T. Davis, and I. Duff. Algorithm 8xx: AMD,

an approximate minimum degree ordering algorithm. ACM

Trans. on Math. Software, 30(3):381–388, Sept. 2004.

[2] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal

boundary & region segmentation of objects in N-D images.

In Proc. of ICCV 2001, pages 105–112, 2001.

[3] Y. Boykov and V. Kolmogorov. Computing geodesics and

minimal surfaces via graph cuts. In Proc. of ICCV 2003,

volume 1, pages 26–33, Oct. 2003.

[4] T. Cootes, C. Taylor, D. H. Cooper, and J. Graham. Active

shape models — Their training and application. Computer

Vision and Image Understanding, 1995.

[5] T. Cour, F. Benezit, and J. Shi. Spectral segmentation with

multiscale graph decomposition. In Proc. of CVPR 2005,

volume 2, pages 1124–1131, 2005.

[6] D. Cremers. Dynamical statistical shape priors for level set-

based tracking. IEEE Trans. on Pat. Anal. and Mach. Int.,

28(8):1262–1273, August 2006.

[7] D. Freedman and T. Zhang. Interactive graph cut based seg-

mentation with shape priors. In Proc. of CVPR 2005, vol-

ume 1, pages 755–762, 2005.

[8] M. X. Goemans and D. P. Williamson. Improved approxima-

tion algorithms for maximum cut and satisfiability problems

using semidefinite programming. Journal of Association for

Computing Machinery, 42:1115 – 1145, 1995.

[9] G. Golub and C. Van Loan. Matrix Computations. The Johns

Hopkins University Press, 3rd edition, 1996.

[10] L. Grady. Random walks for image segmentation. IEEE

Trans. on Pat. Anal. and Mach. Int., 28(11):1768–1783, Nov.

2006.

[11] L. Grady and E. L. Schwartz. Isoperimetric graph partition-

ing for image segmentation. IEEE Trans. on Pat. Anal. and

Mach. Int., 28(3):469–475, March 2006.

[12] J. Keuchel, C. S. C. Schnörr, and D. Cremers. Binary par-
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