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ABSTRACT

Features extracted from cell networks have become popular
tools in histological image analysis. However, existing fea-
tures do not take suf�cient advantage of the cycle structure
present within the cell networks. We introduce a new class of
network cycle features that take advantage of such structures.
We demonstrate the utility of these features for automated
prostate cancer scoring using histological images. Prostate
cancer is commonly scored by pathologists using the Glea-
son grading system and our automated system based upon
network cycle features serves an important need in making
this process less labor-intensive and more reproducible. Our
system �rst extracts the cells from the histological images,
computes networks from the cell locations and then computes
features based upon statistics for the different cycles present
in these networks. Using an SVM (Support Vector Machine)
classi�er on these features, we demonstrate the ef�cacy of our
system in distinguishing between grade 3 and grade 4 prostate
tumors. We also show the superiority of our approach over
previously developed systems for this problem based upon
texture features, fractal features and alternative network fea-
tures.

Index Terms— Gleason grading, prostate cancer, net-
work features, classi�cation

1. INTRODUCTION

Prostate cancer is the most common cancer, excluding skin
cancer, and the second leading cause of death in American
men, after lung cancer. Candidates suspected to have prostate
cancer commonly undergo tissue biopsy in order to assess the
presence and aggressiveness of cancer. The biopsied tissue
samples are imaged with a microscope after hematoxylin and
eosin (H&E) staining and assigned tumor grades according to
the Gleason grading system (grades 1-5). In Fig. 1, we have
shown H&E images of prostate cancer tissue samples corre-
sponding to Gleason grades 3 and 4. The Gleason grade char-
acterizes tumor differentiation, i.e. the degree to which the
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tumor resembles healthy tissue. The sum of the primary and
the secondary Gleason grades yields the Gleason score, the
single most important prognostic indicator for prostate can-
cer patients. The Gleason score plays an important role in
deciding the future course of treatment.

 

 

(a) Gleason 3
 

 

(b) Gleason 4

Fig. 1. H&E images of cancerous prostate tissue

However, the assignment of Gleason scores is a time-
consuming, error-prone process that depends upon the sam-
ples obtained during core biopsy as well as on the expertise
of the pathologist. One way to validate the Gleason score
obtained during core biopsy is to re-calculate this score in
patients who undergo radical prostatectomy, thereby elim-
inating the sampling error. This form of validation is also
required in order to study the correlation of prostate cancer
biomarkers observed in other macroscopic imaging modal-
ities with the Gleason score [1]. Computer-aided Gleason
grading becomes essential when we need to assign tumor
grades to the entire prostate specimen. Therefore, we have
developed a computer-aided system to assign Gleason grades
in an automatic and reproducible manner.

Our system is based upon a novel class of network cy-
cle features extracted from the cell networks present in H&E
images of prostate cancer. Our novel class of network fea-
tures consists of statistics computed on the different cycles
present within Delaunay triangulation of the cell centroidlo-
cations as well as other cell networks. The utility of features
based upon cyclical structures is evident from the fact that
cells in human tissue naturally form different structures (e.g.,
glands, ducts, etc.), each associated with its own characteris-
tic cycle structure. Moreover, prostate cancer [2], as wellas
other forms of cancer [3], are characterized by the existence



of modi�ed structures. For instance, grade 3A prostate cancer
[2] shows the existence of glands with elongated, angular and
twisted forms and grade 3C prostate cancer exhibits papil-
lary and cribriform epithelium, whereas grade 4 prostate can-
cer exhibits fused glands, creating masses, cords, or chains.
Therefore, we can reasonably expect the network cycle fea-
tures to capture the discriminatory patterns existing in grade
3 vs. grade 4 cancer.

In Sec. 2, we have provided a detailed description of our
network cycle features and of our entire system. In Sec. 3, we
have demonstrated the ef�cacy of our system in distinguish-
ing between Gleason grades 3 and 4, and provided compar-
isons with alternative methods. We conclude with some �nal
remarks in Sec. 4.

2. METHODS

2.1. Prostate Cancer Grading System Overview
Our system consists of: (1) cell detection, (2) cell network
computation via Delaunay triangulation and nearest-neighbor
techniques, (3) cycle extraction and cycle statistics computa-
tion and computation of other network-based features, and (4)
SVM classi�cation [4] using the network features.

For cell detection, we use a linear SVM operating in a
sliding window manner, along with a non-max suppression
heuristic. We use a few manual annotations of nuclei and
non-nuclei to train this linear SVM. The advantage of using
a linear SVM is that the SVM scores can be rapidly com-
puted with convolutions. Since we use all three channels
(R; G; B ), this amounts to three image convolutions. We then
rank the positive (nuclei) SVM outputs by their probability
scores and sequentially pick the highest ranking output. To
impose non-max suppression, after a nuclei is picked, the
probability scores in a tolerance circle around it are set to
zero. Examples of our cell detection results are shown in
Fig. 2.

Example Delaunay networks computed from the cell de-
tection results are shown in Fig. 2. We shall describe the cy-
cle extraction and statistics computation in greater detail in
Sec. 2.3. Given the various network features from Sec. 2.3,
we use an SVM with a radial-basis-function kernel in order to
distinguish between the different Gleason grades.

2.2. Related Work
Pioneering work on the use of topological cell network fea-
tures for cancer grading in histological imaging was done in
[5], although they did not consider the Gleason grading prob-
lem. We describe some of their network features in Sec. 2.3
and compare them with our novel network features in Sec. 3.
Automated Gleason grading was the focus in [6, 7, 8, 9, 10].
The work in [8] used global fractal dimensions for texture
characterization and used a large sample population of all
Gleason grades, but they do not provide results on the indi-
vidual accuracies for distinguishing between grades 3 and 4,

whereas the work in [9] only attempted to discriminate be-
tween low-grade and high-grade tumors. In previous work
with texture features [10], we found that texton-based ap-
proaches, although quite successful for the Gleason grading
problem, focus on the statistics of local discriminatory pat-
terns such as nuclei abnormality. They fail to capture the
larger scale cell network structures discovered by our network
cycles, despite the use of multiscale �lter banks. Our cur-
rent approach is most similar to the work in [7, 6] that uses
both texture and architectural (network) features. However,
both these papers used fewer grade 3 and grade 4 samples
for cross-validation. Moreover, the work in [7, 6] focused
on the use of statistics based only on the triangles within the
Delaunay triangulation or the polygons within the Voronoi di-
agram and not based upon more complex higher-order cycles.
Therefore, their network features might be unable to com-
pletely capture the global nature of the discriminatory patterns
between the different Gleason grades. We have provided a
comparison to the methods in [10, 8] in Sec. 3.

We note that accurate cell detection is not the focus of
this paper and we demonstrate excellent Gleason grading per-
formance of our network cycle features despite imperfect cell
detection. An alternative unsupervised Hessian-based �lter-
ing technique has been used for cell detection in [11]. Our
method is similar in computational complexity to this tech-
nique. We note that on account of being a supervised ap-
proach, our method's accuracy could be improved with a suf-
�cient number of expert annotations. Currently we have only
trained it on relatively few non-expert nuclei/non-nucleian-
notations.

2.3. Network Features
In addition to our novel network cycle features described
below, we computed several well-known network features
from nearest-neighbor graphs: (1) Number of vertices (equiv-
alent to cell density since each image covers the same �eld
of view), (2) Number of graph components, (3) Clustering
coef�cients, (4) Fiedler values computed from the vertex
Laplacian and the edge Laplacian and (5) Average shortest
path length. Some of these well-known network features
are described in greater detail in [12, 5]. We shall show in
Sec. 3, that for the Gleason grading task, our novel network
cycle features prove to be more ef�cient than these other
well-known features.

Our novel network cycle features �rst require the extrac-
tion of cycles from a network. For non-planar graphs, e.g.,
nearest neighbor graphs for our cell networks, one can com-
pute a cycle basis that relies upon the initial computation of
a spanning tree. The cycle basis can also be used to com-
pute quantities such as the edge Laplacian and its Fiedler
value [12]. For planar graphs such as Delaunay triangula-
tions, network cycles can be rapidly extracted using the face-
tracing algorithm in [13]. To obtain a characterization of non-
triangular cycles, we remove all long Delaunay edges with



Euclidean length above a cut-off value� . Given the different
cycles, we compute their unweighted and weighted lengths
(with weights based upon the Euclidean distance) and then
compute various statistics: (1) number of cycles with length
greater than 3, i.e., non-triangular (NT) cycles, (2) average
NT cycle length, and (3) maximum NT cycle length.

3. RESULTS AND DISCUSSION

Our prostate cancer dataset consisted of 25 H&E images of
Gleason grade 3 and 50 images of Gleason grade 4. Each
image was acquired at 10X resolution with 0.625 micron pixel
size and was of size1392� 1040pixels. (We note that a few
of our grade 4 images contained small regions belonging to
other tumor grades, but we still assigned the grade 4 label to
these images.)

For training our cell detector, the images were downsam-
pled by a factor of 2, and240nuclei and265non-nuclei anno-
tations were manually obtained. A11 � 11 patch ofR; G; B
values was obtained from each annotation for training a lin-
ear SVM and in order to compute the sliding window outputs
during the testing phase, the SVM's11 � 11 � 3 hyperplane
normal coef�cients were used as correlation kernels for the
R; G; B channels. We use a tolerance radius of5 during non-
max suppression.

We experimented with network features computed from
three different cell networks: (1) Each cell being connected to
K=7 nearest neighbors (KNN), that led to a single connnected
component in all75 images, (2)� NN with connections be-
tween cells when the Euclidean distance between them was
below � = 15, which led to multiple connected components
in several images, and (3) Delaunay networks (� DN) obtained
by removing edges longer than� = 20 from Delaunay trian-
gulations. No attempts were made to systematically optimize
K, � or � .

For training our Gleason grading system, we selected 30
images (15 of each grade) and used the remaining45 images
for testing. We trained a decision stump classi�er on each net-
work feature described in Sec. 2.3 and examined its training
and test accuracy (as percentages). The results are displayed
in Table 1. It is clear from Table 1 that our network cycle fea-
tures (indices 1, 4) followed by the cell density are the most
discriminatory features.

Since we wish to investigate the discriminatory power of
our network cycle features alone, we also used the promis-
ing orthogonal combination of unweighted and weighted av-
erage cycle lengths (feature indices 2,4) with an SVM clas-
si�er. We used the SVM with the standard radial basis func-
tion kernel (
 = 1=numberF eatures; C = 1 ) operating on
the selected network features after Z-score normalization. We
display the SVM classi�cation boundary contours in this 2-D
feature space in Fig. 3, indicating perfect separability.

Our classi�cation results on the test dataset of45 images
are displayed in the �rst half of Table 2. We have tabulated the

Table 1. Training / testing accuracy for individual network
features (Please see text for explanation)

Feat. Feature Net Net
No. Description Train Test

Acc. Acc.
1. � DN: No. NT cycles 93.33 97.78
2. � DN: Mean NT cycle len. 80.00 68.89
3. � DN: Max. NT cycle len. 86.67 64.44
4. � DN: Mean wt. NT cycle len. 100.00 95.56
5. � DN: Max. wt. NT cycle len. 60.00 64.44
6. No. vertices (cell density) 93.33 93.33
7. KNN: Clustering coef�cient 83.33 51.11
8. KNN: Vertex Fiedler value 73.33 62.22
9. KNN: Edge Fiedler value 63.33 42.22
10. � NN: No. network components 83.33 80.00
11. � NN: Mean Comp. Path Len. 90.00 68.89

Weighted Mean Cycle Length
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Fig. 3. SVM boundary contours on network cycle features

classi�er accuracy in correctly identifying each tumor grade
separately, the overall classi�er accuracy as well as the area
under the ROC curve (AUC). Note that the AUC2 [0; 1] is
immune to the classi�er trade-off between grade 3 accuracy
and grade 4 accuracy. In addition to our network cycle fea-
tures, results with the texton-based and fractal-based systems
described in [10, 8], respectively, are also included, neither
of which can deliver the perfect separability obtained by our
network cycle features. In order to avoid any bias from our
training/testing partition, we also run all algorithms on 10
different train/test partitions (still with15 samples per class
in the training set) and have displayed the mean test results
in the second half of Table 2. Network cycle features contin-
ued to outperform fractal and texton features in terms of mean
AUC values, although for some partitions, a poor automatic
choice of the SVM threshold from the training samples led to
sub-optimal Grade4 classi�cation accuracy.

For the approach in [8], we computed the8 recommended



Table 2. Test classi�cation results using the single train-
ing/testing partition in Fig. 3 and average of 10 such partitions

Gr. 3 Gr. 4 Net AUC
acc. acc. acc.

1 train/test
partition:
CycleMeans, 100:00 100:00 100:00 1:000
RBF-SVM
KmeansTextons, 91:00 95:42 94:44 0:987
RBF-SVM[10] � 3:16 � 1:47 � 1:17 � 0:006
Fractals, 100:00 91:43 93:33 1:000
RBF-SVM [8]
10 train/test
partitions:
CycleMeans, 100:00 89:14 91:56 0:995
RBF-SVM � 0:00 � 4:82 � 3:75 � 0:006
KmeansTextons, 94:00 93:14 93:33 0:987
RBF-SVM [10] � 7:00 � 7:40 � 5:13 � 0:002
Fractals, 85:00 79:43 80:67 0:934
RBF-SVM [8] � 9:72 � 4:63 � 3:48 � 0:035

fractal dimensions computed from gray-scale converted im-
ages rather than the recommendedR-channel since this led
to greater accuracy on our dataset. Note that we have only
compared with the baseline K-means approach in [10] (with8
clusters per class) since the other texton generation techniques
only reduce training time without signi�cantly affecting accu-
racy. However, our texton-based AUCs are an improvement
over the results in [10] since we did not use color informa-
tion in that paper. As in [10], to account for the random-
ized pixel samples picked during texton training, we obtained
error bars on the test performance by using multiple train-
ing/testing runs (10) with the single train/test partition. Com-
bination of our pre-selected network cycle network features
with the remaining network features or of the pre-selected
network-based features with the texton or fractal featuresdid
not lead to improvement in accuracy (and hence these results
have been omitted from Table 2), but this conclusion might
change with more samples.

4. CONCLUSION

Our two novel network cycle features have yielded perfect
separability between Gleason grades 3 and 4 on an unseen
dataset consisting of45 images, a sample size comparable
with the largest used in the existing literature for this prob-
lem. In future work, we plan to validate our conclusions with
more samples and to train our system on additional tumor
grades, stroma, benign epithelium and to then use our auto-
matic Gleason grading system on whole-mount histopathol-
ogy slides. Given more samples, it might prove advantageous
to combine our texton features [10] with the network cycle
features since the texton features might contain appearance

information complementary to the cycle structure. In addi-
tion, we also plan to train our system on near-infrared images,
in addition to H&E images, and to use our classi�ers for dis-
tinguishing between PIN (Prostatic Intraepithelial Neoplasia)
and BPH (Benign Prostatic Hyperplasia). We also plan to
explore the utility of our network cycle features in other his-
tological cancer grading applications.
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(a) Gleason 3

 

 

 

 

(b) Gleason 4

Fig. 2. In the top two rows, cell nuclei (marked as+ ) and Delaunay triangulations (with edge lengths> 20removed) are overlaid
on the H&E images from Fig. 1, respectively. In the last row, apart from the cell density differences, note the differences in the
cycle structures in the Delaunay networks.


