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Abstract

We present a theoretical and computational framework for the analysis of
data associated with the node set of an arbitrary graph. The algorithms
described here are collected in a TMMATLAB software package named the
Graph Analysis Toolbox. Our purpose is to describe the functionality of
the Graph Analysis Toolbox and the associated theoretical framework in the
context of biologically inspired, space-variant computer vision.

1 Introduction

For various reasons, many researchers have in the past been interested in
freeing themselves of the constraints of a uniformly sampled, Cartesian data
representation for images. Motivations include a dependence on nonuniform
sensors, feature extraction, data reduction, or a desire to process even in the
absence of some samples (or regions). Another group of researchers have been
interested in modeling biological sensory systems or applying the architecture
to computer vision tasks.

Biological vision systems contrast sharply with standard video inputs.
Although the sampling of visual space varies widely between species in both
the visual angle subtended and the sampling arrangement (see, for example
[72] or [38]), a striking feature is that all systems non-uniformly sample visual
space, usually anisotropically, with different types of receptors. A comparison
of the retinal ganglion cell density for various species may be seen in Figure
1.1.

The main reason for employing a space-variant architecture is to process
with dramatically lower bandwidth while retaining a high resolution in part
of the visual scene. However, the difference in visual sampling across species
suggests that there is a relationship between features of the sampling regime
and the animal’s visual ecology. An example of such a relationship is the
belief that the “horizontal streak” seen in many animals (e.g., the rabbit in
Figure 1.1) is helpful to species that live in open (i.e., non-occlusive) visual
environments [38]. This belief has been supported by the strong correlation
between species with less occlusive visual ecologies and those possessing a
horizontal streak. Uncovering relationships of this nature help the engineer of
a computer vision system design an architecture that is optimized to match
the design constraints for the “visual ecology” of the artificial system. It
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Figure 1.1: Isodensity lines for retinal ganglion cell distribution. Reprinted
from [38], with permission.
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is necessary that a data structure exists with sampling-independent (i.e.,
generalized) computer vision algorithms in order for the designer to be free
to craft the visual sampling to the purpose of the system.

Traditional methods of space variant processing have focused largely on
the mapping from a regular Cartesian grid to an alternate space [10, 6].
Therefore, the primary interest has been on the properties of the transform
and not the necessary data structure. The notion of a “connectivity graph”
was introduced by [71] to address the question of data structure. Unfortu-
nately, the idea was not fully developed in the sense that the problem of
visualization was not addressed, nor were many image processing algorithms
developed that could operate on this structure. Finally, the structure was
not generalized for an arbitrary sampling and no link with algebraic graph
theory [5] was made. More recent approaches to space-variant vision appear
to have abandoned this idea (e.g., [43]). The purpose of the Graph Analysis
Toolbox is to provide a algorithms and data structures intended to facili-
tate computer vision on arbitrary visual sampling arrangements, even if a
space-variant sensor is unavailable.

Work on the sampling of visual space employed by the upper primate
visual system may be divided into two sections:

1. Properties of the mapping

In addition to the considerable data reduction, the discretized log-polar
transform of a Cartesian grid has a number of properties that make it
interesting to researchers in computer vision. Casasent and Psaltis
[10] discovered that objects in the fovea which are scaled, rotated or
translated have a roughly invariant spectral signature. Their method
is to employ the log-polar transform of an image, apply the discrete
Fourier transform and find the log-polar transform of the spectrum (i.e.,
a Mellin transform). This invariance may be used for object recognition
(see [43] for a recent application of this idea). The drawback to this
idea is that the properties of scale and rotation invariance only apply
if the fovea is directed to the center of the object. Furthermore, a
translated object against a static background will not have the same
spectrum as a translated object against a translated background, which
means that the utility of this approach is limited to simple cases of an
object moving against a uniform background (or uniformly translated
background). Another approach to exploiting the structure of the log-
polar mapping is that of Bonmassar and Schwartz [6], who developed a
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specialized Fourier transform called the “exponential chirp transform”
(ECT). The ECT finds the Fourier transform of an image in log-polar
format and uses the structure of the logarithmic function to obtain an
algorithm that is even faster than what would be obtained simply by
the data reduction of an ordinary log-polar transform.

2. Image Processing in a Space-Variant Domain

The notion of a “connectivity graph” was introduced by [71] to al-
low for image processing on a foveal sensor. This notion is introduced
specifically to treat the sampling of the macaque retina [62]. However,
standard computer vision tasks (e.g., edge finding, filtering) were not
developed for this structure. Neither visualization of the connectivity
graph nor how one simulates a space-variant sensor, given access to an
acquisition device based on a Cartesian sensor array, is addressed. Fur-
thermore, the generalization of the connectivity graph to other biolog-
ical sampling schemes was not discussed. Chen [11] used a mesh-based
representation to perform image processing. His data structure does
not allow for an arbitrary topology (i.e., the graph must be planar and
polygonal). Furthermore, his operators are discretized continuum op-
erators, instead of combinatorial operators (see below). Significantly,
Chen proposed the use of a method from computer graphics [34] for
resampling an image to allow the determination of pixel values for an
arbitrary sampling based on a given, Cartesian sampled, image. Un-
fortunately, this method only applies to resamplings for which the Ja-
cobian is known. For the nearly log-polar mapping known to exist in
macaque [62], this resampling works well. However, the method for
resampling does not apply for most species, since the sampling known
to exist does not currently have a mapping describing it.

The Graph Analysis Toolbox follows in the tradition of Wallace [71] and
Chen [11] by providing methods to perform computer vision on graph-based
architectures. However, since data processing on graphs appears in other
fields such as computer graphics [68], 3D surface flattening [73] and data
clustering [40], we hope that this toolbox will find a larger audience. Specif-
ically, there are three problems that we hope to address with this toolbox:

1. Importing images
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Since space-variant sensors [60, 59] are rare, tools must be developed
for transferring image data acquired with a standard, Cartesian sensor
array to a desired space-variant sampling arrangement. We use the
phrase importing an image to refer to the process of transferring
image data from a Cartesian sensor array to a space-variant arrange-
ment. Our strategy is to extend the resampling work of Heckbert [34]
by removing the requirement that the resampling is performed by a
known differentiable function.

2. Visualization

Additional tools are required in order to visualize space-variant images
on a standard raster CRT display. A Voronoi cell and interpolation
method are provided to allow visualization of image data on graphs.

3. Processing

At the core of the Graph Analysis Toolbox are methods for performing
image processing on data associated with each node in a graph. Some
of the methods represent original work, while others are collected from
other researchers. The theory underpinning much of this work was
developed by Roth [58], Branin [7] and classic research in circuit theory
[41, 78].

Since Zahn’s classic paper [84], graph processing algorithms have become
increasingly popular in the context of computer vision [83, 64, 74, 61, 53].
Typically, pixels are associated with the nodes of a graph and edges are
derived from a 4- or 8-connected lattice topology. Some authors have also
chosen to associate higher level features with nodes [61, 53]. For purposes of
importing images to space-variant architectures, we adopt the conventional
view that each node corresponds to a pixel.

Graph theoretic algorithms often translate naturally to the proposed
space-variant architecture. Unfortunately, algorithms that employ convo-
lution (or correlation) implicitly assume a shift-invariant topology. Although
shift-invariance may be the natural topology for a lattice, a locally con-
nected space-variant sensor array (e.g., obtained by connecting to K-nearest-
neighbors) will typically result in a shift-variant topology. Therefore, a re-
construction of computer vision algorithms for space-variant architectures
requires the use of additional theory to generalize these algorithms.
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Data acquired from sensors may be viewed as samples of an exterior,
continuous world, which must be analyzed from the limited information given
by the samples. An alternate approach is to view the sensor data itself as
the object about which conclusions must be drawn. For reasons that will
become clear below, the former view of sensor data will be referred to as the
sampling paradigm and the second as the combinatorial paradigm.

The difference between these paradigms may appear to be purely aca-
demic, since the primary output of many computer vision tasks (e.g., face
detection) makes no comment on whether the result pertains to the pixels
or the “real-world”. However, some algorithms do operate under an im-
plicit paradigm. For example, shape analysis [44, 85] typically adopts the
approach of the sampling paradigm, while morphological analysis [65] em-
ploys the combinatorial paradigm. One practical difference between these
two approaches is that algorithms developed to output statements about
the continuous world should improve performance with increasing samples,
while algorithms developed to output statements about the pixels should de-
crease performance due to the increased processing required. The difference
between these two approaches is amplified when the sensor arrangement is
space-variant, since the sampling theory is not as well developed for nonuni-
form samples [70], despite the fact that some authors have adopted the sam-
pling viewpoint [6]. Furthermore, since a typical motivation for employing
a space-variant architecture is the ability to employ a small number of pix-
els (while maintaining a high peak resolution), algorithms developed in the
sampling paradigm are expected to decrease accuracy while combinatorial
algorithms are expected to significantly increase in speed. For these reasons,
the algorithms collected and developed for this toolbox adopt the combinato-
rial paradigm. Specifically, we approach the combinatorial paradigm through
combinatorial analogs of vector calculus, since operators such as the gradi-
ent [57] and Laplacian [45] play such a prominent role in computer vision.
The mathematical foundation for this viewpoint will be reviewed in the next
section.

First we will introduce the basic mathematics and notation used in this
paper for developing and applying combinatorial algorithms. A discussion of
the data structures and implementational approach to these issues will then
be addressed. The remainder of this paper describes and demonstrates the
various tools for importing, visualizing and processing data on graphs.
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2 Mathematical background

Most of the early work on the algebraic properties of graphs was done in the
context of linear circuit theory. This section is essentially a short review of
Branin’s exposition on the algebraic-topological basis for analogy between
graphs and vector calculus [7].

A graph is a pair G = (V,E) with vertices (nodes) v ∈ V and edges
e ∈ E ⊆ V × V . An edge, e, spanning two vertices, vi and vj, is denoted by
eij. Let n = |V | and m = |E| where | · | denotes cardinality. A weighted

graph has a value (typically nonnegative and real) assigned to each edge
called a weight. The weight of edge eij, is denoted by w(eij) or wij. Since
weighted graphs are more general than unweighted graphs (i.e., w(eij) = 1
for all eij ∈ E in the unweighted case), we will develop all our results for
weighted graphs. Define the degree of a vertex vi, denoted di, as

di =
∑

eij

w(eij) ∀ eij ∈ E. (2.1)

A graph may be defined from a linear electrical circuit by identifying
the wire between circuit components with the node set, and the components
bridging nodes (i.e., branches) as the edge set with weights equal to the
admittance of each component (or the conductance, in the case of resistors).
In this way, every linear circuit has an equivalent graph and vice versa. The
explicit connection between circuits, graphs and algebraic topology was made
in Roth’s fundamental paper [58]. Roth showed that Kirchhoff’s Current Law
corresponds to a homology sequence in topology, while Kirchhoff’s Voltage
Law corresponds to a cohomology sequence. Roth then proposed Ohm’s Law
as a bridge between the sequences. Largely adopting the notation of Strang
[66], we may write the fundamental equations of circuit theory in matrix
form.

Define the m × n edge-node incidence matrix as

Aeijvk
=











+1 if i = k,

−1 if j = k,

0 otherwise,

(2.2)

for every vertex vk and edge eij, where eij has been arbitrarily assigned an
orientation. The notation Aeijvk

is used to indicate that the rows of A are
indexed by edge eij and the columns of A are indexed by node vk.
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Define the m×m constitutive matrix, C, as the diagonal matrix with
the weights of each edge along the diagonal.

The three main laws governing circuit theory may be written as

AT y = f (Kirchhoff’s Current Law), (2.3)

Cp = y (Ohm’s Law), (2.4)

p = Ax (Kirchhoff’s Voltage Law), (2.5)

where f represents current sources at the nodes, p is the potential drop
(voltage) across a branch, x is the potential at a node and y is the current
through a branch.

By viewing the incidence matrix as a linear operator, it may be seen
that application of that operator to a set of numbers assigned to each node
induces a related set of numbers on the edges. Kirchhoff’s Voltage Law is
an example of this operation, in which electric potentials at each node are
converted to voltages across edges by application of the incidence matrix. In
a similar manner, the application of the operator AT to a set of numbers
on the edge set of a graph induces a related set of values defined on the
node set. Kirchhoff’s Current Law is an example of this operation, since the
application of AT to the currents through each branch yields the values of the
current sources at each node. Application of C may be viewed as bridging
the voltages and currents defined on each edge.

When an edge is added to a tree, the unique closed path so formed is
called a loop. The set of loops, Q, formed by the addition of edges to a tree
consists of elements, qi, such that qi ∈ Q. Note that |Q| = |E| − |V | + 1
(a variation of the Euler formula), since the number of edges in a tree of a
connected graph is |V | − 1 [5]. Define the loop-edge incidence matrix

Kmkeij
=











+1 if eij is crossed positively in a clockwise traversal of qk,

−1 if eij is crossed negatively in a clockwise traversal of qk,

0 otherwise.

(2.6)
Similar to the edge-node incidence matrix, the application of the loop-edge
incidence matrix to a set of numbers defined on the edges returns a related
set of values defined on each loop.

Branin [7] identified the A, AT and K operators with the familiar gradient,
divergence and curl operators from vector calculus. This analogy holds for
familiar identities such as KA = 0 (i.e., the curl of the gradient is zero) and
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Operator Vector calculus Combinatorial

Gradient ∇ A

Divergence ∇· AT

Curl ∇×∇ K

Laplacian ∇ · ∇ AT A

Beltrami ∇C · ∇ AT CA

Table 2.1: Correspondence between continuum differential operators and
combinatorial differential operators on graphs. C represents a constitutive
matrix relating flux to flow, e.g., a conductivity tensor, a diffusion tensor, a
thermal conductivity, a stress-strain tensor, or, in the context of differential
geometry, a metric tensor. A is the edge-node incidence matrix of the graph
representing the topology of the problem and K is the loop-edge incidence
matrix of the graph.

allows definition of other operators, such as the Laplacian, L = AT A. The
generalization of the Laplace operator to the Laplace-Beltrami operator [75]
fits well with this analogy, where L = AT CA. Since the constitutive matrix
defines a weighted inner product of edge values (i.e., 〈y, Cy〉 for a vector of
edge values, y), it may be considered as representing metric information. As
a matrix, the Laplacian may be derived directly from knowledge of V and E
by letting

Lvivj
=











di if i = j,

−w(eij) if eij ∈ E,

0 otherwise.

(2.7)

The notation Lvivj
is used to indicate that the matrix L is being indexed by

vertices vi and vj. This matrix is also known as the admittance matrix in
circuit theory, and a good review of the properties of this matrix is given in
[47]. More than one representation of the combinatorial Laplacian operator
has been developed, depending on the choice of metric and normalization
[24, 25, 48, 13]. However, unless otherwise noted, the above formulation
will be referred to as the Laplacian. A summary of the analogies between
operators in vector calculus and graph theory is given in Table 2.1, while
additional relationships are listed in Table 2.2.

There is both a conceptual and practical difference between the graph
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Equation Continuum Combinatorial

KVL ∇V = E Ax = p

KCL ∇ · J = dρ

dt
AT y = f

Ohm’s Law σ−1E = J Cp = y

Dirichlet Integral 1

2

∫

Ω
|∇u|2dΩ 1

2
xT AT CAx

Table 2.2: Correspondence between continuum differential equations and
combinatorial differential equations on graphs. Kirchhoff’s current law is a
quasi-static (∂B

∂t
= 0) approximation to Maxwell’s Equation ∇ × E = ∂B

∂t
.

Kirchhoff’s voltage law follows from the definition of electric field as the
gradient of potential. Ohm’s Law is a constitutive (phenomenological) law
asserting a presumed linear dependence between voltage and current.

theoretic analog of a concept from mathematical physics and a discretization
of the standard continuum representation of that same concept. Consider
solving Poisson’s equation [20] on a continuous domain with a digital com-
puter (e.g., through use of finite elements). The objective of such a solution
would be that the values assumed at any point in the domain could be de-
termined, not just those points used in the calculation. In contrast, solving
Poisson’s equation on a graph, Lx = f , returns values only for the node
set. Furthermore, the number of nodes and the graph topology (i.e., edge
set) directly affects the solution to Poisson’s equation. In contrast, a major
design goal of a discretization procedure is that the solution for points in the
domain are invariant to changes in the meshing.

Conceptually, one can understand the difference between solving for the
charge distribution at the nodes of a planar electrical circuit given initially
charged capacitors (i.e., the combinatorial diffusion equation [54]), and solv-
ing for the values taken at discrete samples of a planar conductive material
with an initial heat distribution (i.e., the discretized continuous diffusion
equation). Therefore, the solution of a continuous problem by use of a dig-
ital computer is referred to here as a discrete approach, while the solution
of a problem using the graph-theoretic analogies shown above is referred to
as a combinatorial approach.

All functions in this toolbox operate under the graph-theoretic, combi-
natorial paradigm. By this we mean that the operators we are concerned
with are represented by matrices and the quantities of interest are defined by
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vectors associating values to nodes, edges or meshes. Typically, the values as-
sociated with nodes are image values (e.g., grayscale, RGB color channels) or
coordinate values, while those associated with edges and loops are dependent
on the nodal values (e.g., the result of applying the gradient operator).

2.1 Adjacency matrix

Another fundamental matrix in graph theory is the n × n adjacency matrix
defined as

Wvivj
=

{

w(eij) if eij ∈ E,

0 otherwise.
(2.8)

The adjacency matrix has also appeared in applications (e.g., [53]), and its
spectral properties have been thoroughly analyzed [22]. By noting that the
adjacency matrix, Laplacian matrix and edge-node incidence matrix all com-
pletely specify the topology of a graph, it is not surprising that these matrices
are related. Specifically, it is well known [5] that D−W = L = AT CA, where
D is the diagonal matrix with Dii = di.

2.2 Indicator vectors

Another important type of values associated with nodes, edges and loops is
an indicator vector. Indicator vectors are used to indicate membership
of a node, edge or loop in a set. A common goal [55, 64] is to determine
which components of a graph belong to a set (e.g., which pixels belong to a
segment), and therefore the indicator vector represents the solution. Another
important use of an indicator vector is to perform set operations (e.g., union,
intersection) or determine properties of the set (e.g., cardinality, boundary
nodes). We develop this section in the context of a nodal indicator vector.
Indicator vectors on the set of edges or loops follow an identical development.
For a set of nodes, S ⊂ V an indicator column vector, x, may be defined as

xi =

{

0 if vi /∈ S,

1 if vi ∈ S.
(2.9)

For two sets, S1 and S2, with corresponding indicator vectors x1 and x2,
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the usual set operations may be performed with

|S1| = xT
1
x1 (Set cardinality), (2.10)

S1 ∩ S2 = x1 ∧ x2 (Set intersection), (2.11)

S1 ∪ S2 = x1 ∨ x2 (Set union), (2.12)

where ∧ and ∨ denote the logical (binary) “and”, “or” operations.
The matrices W and L may be used to determine useful properties of a

vertex set, S, through operations with its indicator vector, x, in the following
manner

1

2
xT Wx =

∑

eij ,vi∈S,vj∈S

w(eij) (Sum of the weights internal to S),

xT Lx =
∑

eij ,vi∈S,vj∈S

w(eij) (Sum of the weights on the boundary of S),

where S indicates the set complement of S.

3 Implementation

We chose to implement the toolbox in TMMATLAB for several reasons:

1. Numerical linear algebra is at the core of the combinatorial approach to
space-variant vision outlined above. Since TMMATLAB is well equipped
with a numerical linear algebra package and a sparse matrix package
[30], TMMATLAB is a natural environment for the toolbox.

2. Rapid prototyping of new algorithms is facilitated by the extensive set
of tools available in TMMATLAB. Since this toolbox is intended for a
research audience, the ability to rapidly prototype new algorithms is
essential.

3. Visualization of space-variant images associated with graphs is a major
design objective of the Graph Analysis Toolbox. TMMATLAB provides
an excellent ability to visualize data.

However, TMMATLAB also has several drawbacks:
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1. TMMATLAB is proprietary and licenses for the standard package and
additional toolboxes may cost hundreds to thousands of dollars. This
fact limits the accessibility of the Graph Analysis Toolbox.

2. Speed of computation in TMMATLAB can be very slow for certain types
of operations (e.g., code loops). Although it is possible to use the
MEX package to speed up some of this computation, the portability
of the code suffers. Fortunately for the Graph Analysis Toolbox, the
numerical linear algebra package in TMMATLAB is relatively fast.

A full listing of the functions in the Graph Analysis Toolbox is given
in Appendix A and a list of demos is given in Appendix B. For reasons of
consistency, ease of readability and agreement with publications, the same
variable names were used to refer to the same variables across functions and
demos. A listing of standardized variable names used in the Graph Analysis
Toolbox is given by Appendix C.

4 Data structures

There are different ways of representing a graph on a computer (e.g., lists,
matrices). The choice of representation is often dependent on the particular
application. The guiding principle in defining data structures for the Graph
Analysis Toolbox is that functions should exist for switching between differ-
ent representations and that information which may not be bound together
should not be forced together (e.g., in a struct). Since TMMATLAB uses
a pass-by-value system, this latter principle is especially important. Conse-
quently, there is no all-purpose struct that contains all possible information
about a graph. A full listing of standardized variable names is given in
Appendix C.

4.1 Topological information

The most fundamental description of a graph is the topology, since none
of the matrix representations may be defined without it. The most space
efficient representation of the graph topology is given by a list, edges, that
contains pairs of integers indicating nodes joined by an edge. However, the
matrices A, L and W may be generated from the edge list with the functions
incidence.m, laplacian.m and adjacency.m, respectively. The function
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adjtoedges.m allows conversion from a adjacency matrix representation of
topology to an edge set.

4.2 Nodal information

Numbers associated with nodes in the Graph Analysis Toolbox typically
have two separate meanings: coordinates and image values. Aside from the
semantics, there is no difference in the way in which these values may be
represented or processed. However, since one may be interested in keeping
notation of these quantities separate, two different N-dimensional lists are
kept to refer to these quantities. The list called points refers to coordi-
nate values, while the list vals typically refers to image values (e.g., RGB,
grayscale).

4.3 Structs

Two quantities are kept in TMMATLAB structs, since their component
values are never used separately. The information necessary to perform im-
porting of a graph is kept in a struct called imgGraph. Voronoi visualization
information (see below) is kept in a struct called voronoiStruct.

5 Generating graphs

When building a graph from a sensor array (or simulated sensor array),
it is common to assign the value of each sensor to a node. However, the
choice of connectivity (i.e., edge set) is much less clear. Typically, one
wants the nodes to be locally connected. Two functions are provided for
locally connecting a point set in arbitrary dimensions, knn.m and triangu-

latepoints.m. An N-dimensional Delaunay triangulation is implemented by
triangulatepoints.m and K-nearest-neighbors is implemented by knn.m.
For 2-dimensional points, triangulatepoints.m calls the MEX version of
Shewchuck’s triangle.c [63], if installed. Recent interest in the use of
“small-world” networks [76, 77, 67] prompts inclusion of the function ad-

drandedges.m to randomly add a specified number of edges to the graph.
The effect of using addrandedges.m is to dramatically decrease the diameter
of the graph [76] while only minimally increasing the number of edges.
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Due to the prominence of the Cartesian lattice in traditional computer
vision, the function lattice.m generates a lattice with three different topolo-
gies: 4-connected, 8-connected or a radially connected topology (as in [64]).

The use of a multi-scale image representation to enhance image analysis
algorithms has a long history dating back to Burt [9] and Witkin [80]. Typi-
cally [82, 12, 1, 17, 51], a multi-resolution representation is employed both for
speed and robustness against noise by performing the analysis at the coarsest
level and projecting the solution back to the original image. Multiresolution
approaches to general graphs have also been proposed [4, 28]. The Graph
Analysis Toolbox includes one function latticepyramid.m that draws on
this literature by returning a pyramid-shaped graph with 3-dimensional co-
ordinates, such that every node at a higher level is connected to four (non-
overlapping) nodes on the lower level. Although the pyramid graph is re-
turned as a unit (i.e., a single node and edge set), an index is also returned
indicating the level of each node and a list of its four children on the lower
level. Some of the graphs described in this section are displayed in Figure
5.2.

Finally, the function roach.m generates the “roach” graph of Guattery
and Miller [33] for purposes of testing.

5.1 Biological datasets

Included in the extended (demo) release of the Graph Analysis Toolbox is a
precomputed (i.e., saved in .mat files) set of filters corresponding to the visual
sampling associated with 22 different species. Following the retinal diagrams
in [38] of ganglion cell isodensity lines (see Figure 1.1), topographical maps
of other species have been published. Specifically, we have included node sets
(and filters) corresponding to the visual sampling (as determined by ganglion
cell counts) for baboon [79], beagle [52], bottlenosed dolphin [46], cat [37],
cheetah [38], cow [38], deep-sea bass [15], deer [38], German shepherd [52],
harlequin tusk fish [16], labrador [38], pig [38], pigeon [79], plains kangaroo
[36], rabbit [35], sacred kingfisher [50], tree kangaroo [36], two-toed sloth [18],
squirrel [38], wolf [52] and yellow-finned trevally [14]. A sampling reflecting
the macaque retina is also provided by using the retinotopic function w =
log(z + a) of Schwartz [62]. Generating sampling points according to this
distribution is accomplished by the function logz.m.

Graphs were generated from topographic maps by interpolating the con-
tours across the extent of the topographic image, treating this interpolation
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Examples of the structured graphs (i.e., node coordinates and
edge sets) generated by functions in the Graph Analysis Toolbox. (a) A
4-connected lattice. (b) An 8-connected lattice. (c) A radially connected
lattice. (d) A 4-connected “small world” lattice. (e) A flattened 4-connected
pyramid lattice. (f) A K-nearest-neighbors graph with a randomly generated
set of coordinates.
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as a probability density function (PDF), sampling a predetermined number
of points and scaling the coordinates of the points to fit the desired input
image size. In the case of the precomputed filters included with the Demos
package, the desired input image size was 256 × 256 (65, 536 pixels) and the
number of samples was 6, 400, resulting in less than an order of magnitude
fewer pixels than in the original image. The function contour2graph.m ac-
cepts contour images where the background is white, the contours are shades
of gray proportional to the values of the isodensity lines and the blind spot
(or pecten, in the case of Aves) is colored red and returns an interpolated
image (i.e., the PDF) by solving the corresponding Dirichlet problem (see
below). Sampling points from the PDF is accomplished with the function
pdf2graph.m. The process of converting a contour to a graph is shown in
Figure 5.3. For purposes of comparison, Appendix D illustrates the PDFs of
all the species included in the Graph Analysis Toolbox.

6 Importing images

The problem of importing an image is to transfer an image taken with a
conventional lattice sensor array to a space-variant graph (usually with many
less nodes than pixels in the original) with minimal aliasing. The approach
proposed by Chen [11] was to treat the problem of importing as a resampling
problem by calculating appropriate filters [34] to apply to a neighborhood
of pixels in the original image in order to output a value for each node.
The method of Heckbert [34] for defining filters requires the definition of a
differential resampling function that inputs points in the original sampling
and outputs points in the new sampling. This formulation was sufficient for
Chen, since he was using the w = log(z + a) formulation of the mapping
given by Schwartz [62] to model macaque retinotopy. However, we would
like to make use of the visual sampling strategies of other species, for which
no retinotopic function is known.

Since space-variant sampling arrangements typically have some areas of
high acuity and some areas of low acuity, they require an active vision system
to allow the high acuity regions to sample different regions of a visual scene.
By analogy with the high acuity foveal pit found in most vertebrate vision
systems, we refer to the region of highest acuity as the fovea and the process
of addressing the high acuity area to a region of an image as foveation. In
order to simulate the active vision aspects of a space-variant visual sampling
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(a) (b) (c)

Figure 5.3: Demonstration of conversion from a retinal topography to a
graph. The example chosen here is based on the retinal topography of
the cheetah [38]. (a) Isodensity contours of the cheetah retinal topogra-
phy. Darker contours represent a lower ganglion cell density, while lighter
contours represent a higher ganglion cell density. The blind spot is shown
in black for publication, although the function contour2graph.m requires
it to be colored red. (b) The interpolated and normalized probability den-
sity function determined from the contours (see text for details). Darker
areas correspond to areas of greater probability. (c) The graph obtained by
sampling 6, 400 nodes from the distribution in (b) and connecting with a
Delaunay triangulation. Note that the fovea is not at the center of the image
(i.e., the contours are taken from the left eye).
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regime, we would like to be able to specify a point in a large image for the
system to fixate on. Therefore, a further design criteria for an importing
procedure is that we want the importing procedure to be relative to its own
internal coordinate system that may be “aimed” at different areas of a large
image. Our method for accomplishing this is to give the nodes coordinates
such that the fovea is at the origin and each unit represents one pixel in a
standard raster image. The advantage of this design is that the filters may be
precomputed for a graph relative to the origin and simply shifted to different
areas of the image, resulting in fast on-line importation. The drawback to
this design is that the extent of the “visual field” must be fixed prior to
computing the filters.

Heckbert’s Elliptical Weighted Average filters are ellipses computed for
each new sample such that the axes of the ellipse lay along the eigenvectors
of the Jacobian matrix and the weights for each point in the ellipse are given
by an elliptical Gaussian function. In other words, the image value assigned
to each resampled point is the weighted sum of image values on the original
points lying within the computed ellipse. Our approach to computing the
ellipses for the resampled points is to perform a least-squares fit of an ellipse
to the Voronoi cell of each node and compute Gaussian weights. The ellipses
computed for a small randomly generated set of Gaussian distributed points
in the plane are seen in Figure 6.4.

The filters for a point set are stored in a TMMATLAB struct named img-

Graph. An imgGraph has three fields: pntMap, breakpoints and filtWeights.
In order for the importation of images to be fast in TMMATLAB the three
fields are used to avoid code loops. The breakpoints field contains a list
of indices to pntMap and filtWeights that indicate the start and end of
a block of pixels or weights corresponding to each new node. The pntMap

field is a set of two vectors containing the x- and y-coordinates for the nodes
corresponding to those pixels that lie within the ellipse for each point. The
filtWeights field contains the weight to be applied to each pixel in pntMap.
Therefore, the size of breakpoints is the same as the cardinality of the node
set, while the size of pntMap and filtWeights are larger than the node set
(since more than one pixel typically maps to each node), but equal to each
other. Figure 6.5 demonstrates the importing of an image onto a set of nodes
that were randomly distributed in the plane with a uniform probability. Fig-
ure 6.6 demonstrates the simulated active vision system by importing a large
image at multiple fixation points.

19



Figure 6.4: Voronoi cells for a point set and the corresponding ellipses fit
with least squares error used to generate the Elliptical Weighted Average
filters of Heckbert [34].

7 Visualization

Visualization of arbitrary, nonuniformly 2D sampled data is a difficult issue.
Typical “stick-and-ball” representations of graphs poorly convey the content
of an image associated with the nodes. Two methods have been implemented
for visualizing an image on an arbitrary architecture.

The first of these methods interpolates image values at a node across the
faces of a graph. If the graph is planar, the interior faces will be polygons,
with image data at each point on the polygon. If the graph is nonplanar, a
Delaunay triangulation of the points may be found quickly for purposes of the
visualization. However, it should be noted that not all graphs will have faces
that produce a good image (e.g., if the nodes were collinear). A common
“shading” technique from computer graphics is to perform a bilinear inter-
polation across vertices (i.e., Gourand shading). Applying this technique to
the internal faces provides a smooth change across the image. Unfortunately,
the polygonal faces can introduce artifacts into the visualization that degrade
the quality. The function showmesh.m generates a display in this manner.

A second visualization method is implemented in the Graph Analysis
Toolbox that uses the Voronoi diagram of the vertex set. This technique
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(a) (b)

(c) (d)

Figure 6.5: Demonstration of importing an image onto a set of points dis-
tributed randomly in the plane with a uniform distribution. Note that the
resolution of the sampling is almost two orders of magnitude smaller than
the resolution of the original. (a) Nodes randomly placed in the plane with
a uniform distribution. (b) Voronoi cells for the node set upon which the
filters were generated. (c) The original raster image: ESLab0043.jpg. (d)
The image imported onto the node set.
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(a) (b)

(c) (d)

Figure 6.6: Demonstration of importing a large image onto a smaller graph
at different points (i.e., multiple fixation points). The example chosen here
is based on the retinal topography of the pigeon [79]. (a) Original image:
ESLab0043.jpg. The two fixation points are marked with a white ‘×’ and
a white ‘+’. (b) The graph corresponding to the retinal topography of the
pigeon. (c) Result of importing the image in (a) at the point marked with
a white ‘×’. (d) Result of importing the image in (a) at the point marked
with a white ‘+’.
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simply assigns each Voronoi cell the color (or grayscale value) of its corre-
sponding vertex. The visualization benefits from its independence of the
planar and internal faces requirements of the previous technique. However,
the visualization can sometimes look blocky. Furthermore, since the bound-
ary nodes have Voronoi cells that extend to infinity, a dense set of phantom
nodes is used to make finite, appropriately sized cells for the boundary nodes.
The Voronoi information for a graph is stored in a TMMATLAB struct called
voronoiStruct. A voronoiStruct is produced from a node set by the func-
tion voronoicells.m and consists of the three fields pts, faces and index.
The field voronoiStruct.pts contains coordinates for the vertices of the
Voronoi cells for the node set. Faces intended for use by patch.m are con-
tained in voronoiStruct.faces and an index referencing nodes with Voronoi
cells contained inside the convex hull is given by voronoiStruct.index.

The two visualization techniques are illustrated in Figure 7.7 for a grayscale
image. Despite the smoothness given by the face interpolation method of vi-
sualization, the Voronoi cells method offers a better notion of the structure
of the image distribution on the nodes, and we therefore prefer it for visual-
ization of space-variant images in the remainder of this document, as well as
in the space-variant examples shown above.

It is important to distinguish between sampling aliasing and visual alias-
ing. Sampling aliasing refers to the inadequacy of the local sampling density
to satisfy the image frequency (as detailed above). On the contrary, visual
aliasing refers to the displeasing visual artifacts induced as a result of the
visualization technique. Sampling aliasing is minimized by the precomputa-
tion of Heckbert’s resampling filters. Visual aliasing, however, depends on
the visualization method employed and in no way reflects an inadequacy of
the data obtained nor its internal representation.

8 Processing

Processing data on graphs is a recurring theme that extends beyond space-
variant vision systems. There are four main types of processing implemented
in the Graph Analysis Toolbox: Interpolation, filtering, edge finding and
segmentation.

Isotropic and anisotropic versions of all the processing methods exist in
the sense that the edge weights all take unity value in the isotropic case
and the weights assume different values in the isotropic case. For example,
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(a) (b)

(c) (d)

Figure 7.7: Comparison of the two visualization techniques implemented in
the Graph Analysis Toolbox. (a) Original image: ESLab0043.jpg. (b) The
graph corresponding to the retinal topography of the plains kangaroo [36]. (c)
Visualization of the space-variant image performed by interpolating across
the Delaunay triangles of the graph implemented in showmesh.m. (d) Visual-
ization of the space-variant image performed by assigning a uniform grayscale
value to the Voronoi cells of the node set, implemented in showvoronoi.m.
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use of uniform or nonuniform weights in building the Laplacian matrix is
the difference between the isotropic diffusion of Koenderink [42] and the
anisotropic diffusion of Perona and Malik [54]. Therefore, the theme is to
encode data information (e.g., intensity changes for images, distances for a
point set) in the structure of edge weights, and then build the operator in
accordance with the weights. This procedure provides the difference between
isotropic or anisotropic diffusion, interpolation, filtering and edge finding, as
well as affording the structure necessary for some segmentation algorithms
(e.g., [64]).

The functions used to build the important matrix operators listed above
are incidence.m, laplacian.m and adjacency.m. The function incidence.m

generates the edge-node incidence matrix, laplacian.m generates the Lapla-
cian matrix and adjacency.m generates the adjacency matrix. In order to
allow the user to choose between isotropic and anisotropic operators, all of
the operator generating functions allow specification of edge weights in order
to produce anisotropic operators, but default to generating isotropic opera-
tors if weights are not specified.

The important task of generating a weight set is handled by the function
makeweights.m. Define the vector of data changes, cij, as the Euclidean
distance between the fields (e.g., coordinates, image RGB channels, image
grayscale, etc.) on nodes vi and vj. For example, if we represent grayscale
intensities defined on each node with vector b, then c = Ab. If the fields are
nodal coordinates in the plane, then c represents the Euclidean distance in
the plane. In order to make one choice of β applicable to a wide range of
data sets, we have found it helpful to normalize the vector c.

Although we typically treat coordinates as any other data field (e.g., to
filter, interpolate, etc.), in the context of space-variant vision we may want
to treat spatial differences between the nodes separately from image-derived
differences. Therefore, makeweights.m optionally accepts both data values
and coordinate values for the node set and generates a corresponding (nor-
malized and histogram equalized) c1 and c2 for data and coordinate values,
respectively. Accordingly, associated with the data and coordinates is a sep-
arate parameter, β1 and β2 we call scale. Setting either parameter to zero
nullifies the effects of the corresponding data or coordinates. A common
weighting function is implemented in makeweights.m, defined by

wij = exp
(

−|β1c1

ij + β2c2

ij|
)

. (8.1)
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8.1 Interpolation

The method of interpolation implemented in the Graph Analysis Toolbox is
to solve the combinatorial Laplace equation with Dirichlet boundary condi-
tions given by the known values [31]. A solution to the combinatorial Laplace
equation has several desirable properties in the context of an interpolation
method (see below). Both isotropic and anisotropic interpolation are handled
similarly. Furthermore, use of the algorithm is independent of the dimension
in which a graph is embedded.

Solving the Laplace equation in order to “fill-in” missing values has been
described in the context of digital elevation models [8, 81], image editing [27],
and is even used by the TMMATLAB function roifill.m to fill in regions of
missing data in images.

Solutions to the Laplace equation with specified boundary conditions are
harmonic functions, by definition. Finding a harmonic function that satisfies
the boundary conditions may be viewed as a method for finding values on
the interior of the volume that interpolate between the boundary values in
the “smoothest” possible fashion [21]. In this section, we discuss the proper-
ties of harmonic functions that make them useful for interpolation, defining
smoothness in terms of extremal solutions to the Dirichlet integral.

From a physical standpoint, one may think of a heat source with a fixed
temperature at the center of a copper plate and a second heat source with
fixed temperature on the boundary of the copper plate. The temperature
values taken by the plate at every point are those assumed by a harmonic
function subject to the internal and external boundaries imposed by the heat
sources. In this analogy, the temperatures measured on the inside of the cop-
per plate may be viewed as smoothly interpolated between the temperature
on the internal heat source and the external heat source. The internal and
external heat sources are considered to be boundary points, while points on
the copper plate for which temperature values are found are interior points.
Three characteristics of harmonic functions are attractive qualities for gen-
erating a “smooth” interpolation:

1. The mean value theorem states that the value at each point in the
interior (i.e., not a boundary point) is the average value of its neighbors
[2].

2. The maximum principle follows from the mean value theorem. It states
that harmonic functions may not take values on interior points that are

26



(a) (b)

(c) (d)

Figure 8.8: Interpolation of image data on a space-variant graph from which
a hole has been cut out. (a) A space-variant graph patterned after the
retinotopic map of the macaque [62]. (b) The Lena image imported onto
the graph. (c) Space-variant image with a hole arbitrarily cut out of it.
Underlying graph structure is shown inside the hole. (d) Foveal image with
isotropically interpolated data in the hole.
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Figure 8.9: Anisotropic interpolation of image data on the macaque-based
graph where the same region as in Figure 8.8 has been removed. Weights
were determined using β1 = 30 (see text for details).

greater (or less) than the values taken on the boundary [2].

3. The Dirichlet integral is minimized by harmonic functions [19]. This
means that the integral of the gradient magnitudes for the system will
be minimized, subject to fixed boundary conditions.

The function dirichletboundary.m inputs an index of boundary nodes
and their values and solves the combinatorial Dirichlet problem for a graph
with arbitrary connectivity, producing a combinatorial harmonic function.
An example of using dirichletboundary.m to perform isotropic interpola-
tion on a space-variant image with a region of missing values is displayed
in Figure 8.8. By generating weights corresponding to the image intensities,
anisotropic interpolation may also be used to find the missing values in a
region, as displayed in Figure 8.9.

Graph drawing is another task in which dirichletboundary.m is useful.
By treating the extremal nodes as boundary nodes, the coordinates of the
interior nodes may be interpolated in order to produce a more regular rep-
resentation in the sense that each interior node is placed at the average of
its neighbors (by the mean value theorem). This usage of dirichletbound-
ary.m is displayed in Figure 8.10.
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(a) (b)

Figure 8.10: An example of using the interpolation method for graph draw-
ing. (a) A graph was created by randomly generating the coordinates with a
uniform distribution and connecting the points with a 2D Delaunay triangu-
lation. The black dots represent the extremal points chosen to represent the
boundary (i.e., to have their coordinates fixed). (b) The graph generated by
interpolating the coordinates of the interior nodes.
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9 Filtering

In the context of surface fairing, Taubin has already taken a combinatorial
approach to filtering on a graph [68, 69]. Taubin treats the coordinates of
a vertex set of a 3D mesh as a signal for which low-pass filters may be de-
signed in order to smooth a noisy surface. The signal processing treatment
in Taubin’s work follows standard signal processing approaches, except that
Taubin wants to apply the same techniques to a shift-variant topology. Gen-
erally the eigenfunctions of the Laplacian operator define the surface harmon-
ics [20]. In the combinatorial setting, the Laplacian operator is represented
by the Laplacian matrix, although Taubin chooses a different combinatorial
representation of the Laplacian operator than the definition given in (2.7).
For shift-invariant topologies, the Laplacian matrix is circulant and the com-
plex exponential basis vectors (functions) are the eigenvectors [66]. In the
general case of a shift-variant topology, the Laplacian is not circulant, re-
quiring a different set of (usually unknown) eigenvectors in order to perform
signal filtering. Taubin’s method of filtering circumvents the need to com-
pute the eigenvectors explicitly in order to modify the spectral coefficients
of an input signal (e.g., the coordinates of a graph or an image on a graph).
The function filtergraph.m implements Taubin’s λ − µ filtering technique
as well as standard mean filtering. Both the mean filter and the λ − µ fil-
ter are low-pass filters. However, a high pass filter may be generated by
subtracting the low-pass filtered signal from the original. A band-pass fil-
ter may be generated by using the difference of two low-pass filters. Figure
9.11 demonstrates image filtering and Figure 9.12 demonstrates coordinate
filtering.

The spectrum of the Laplacian matrix has been thoroughly investigated
[49, 13, 47, 3, 29]. It is well known that the eigenvalues of the Laplacian
matrix are nonnegative and ordered such that the smallest eigenvalue corre-
sponds to the lowest frequency harmonic (i.e., the DC component) and the
largest eigenvalue corresponds to the highest frequency harmonic. This view
of the spectral characteristics of the Laplacian matrix predicts its use as an
edge detector since, as an operator, it will clearly have the effect of a high-
pass filter. Another implication of the spectral properties of the Laplacian
matrix is that an iteration on the signal x of the form

x1 = x0 − αLx0, (9.1)

will have the effect of creating a low-pass signal, since a high-pass form of the
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(a) (b) (c)

(d) (e) (f)

Figure 9.11: Filtering image data on a space-variant image. (a) The original
image: ESLab0059.jpg (b) A space-variant graph patterned after the retinal
ganglion cell distribution of the bottlenosed dolphin [46]. (c) The imported
image, before any processing. (d) Result of the mean filter applied to the
image in (c). (e) The low-pass λ − µ filter [68] applied to the image in (c).
(f) A high-pass filter of (c), produced by differencing the low-pass signal of
(e) with the original.
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(a) (b)

(c) (d)

Figure 9.12: Filtering coordinate data on a ring graph. (a) A noisy ring graph
produced by adding radial Gaussian distributed random to nodes arranged in
a perfect circle. (b) The effect of applying the mean filter to the coordinates
of the graph in (a). (c) The low-pass λ−µ filter [68] applied to the coordinates
of the graph in (a). (d) A high-pass filter of the coordinates in (c), produced
by differencing the low-pass signal of (c) with the original.
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(a) (b) (c)

Figure 9.13: Diffusion filtering on an image. (a) The original image: ES-

Lab0059.jpg (b) The effect of performing isotropic diffusion on the 4-
connected lattice representing image (a). (c) The effect of performing
anisotropic diffusion on the 4-connected lattice representing image (a).

signal is subtracted from the original. Since (9.1) represents one iteration of
the diffusion equation

dx

dt
= Lx, (9.2)

both isotropic [42] and anisotropic [54] diffusion may be viewed as a low-pass
filter. The function diffusion.m performs diffusion on a signal. Figure 9.13
shows an example of isotropic and anisotropic diffusion on an image.

The combinatorial Dirichlet problem method of interpolation presented
above may also be viewed as a low-pass filter, since it requires the solution to
a system of equations corresponding to the Laplace equation, constrained by
Dirichlet boundary conditions. A solution to a system of equations Lx = b
may be viewed (if not computed) as x = L−1b. The inverse of a matrix retains
the same eigenvectors as the original, but the corresponding eigenvalues of the
inverse matrix are the reciprocal of the eigenvalues of the original. Therefore,
the solution to the constrained Laplace equation may be viewed as a low-
pass filter since the lowest frequencies of the inverse of the (constrained)
Laplacian matrix will correspond to the largest eigenvalues and vice versa.
The relationship of the solution to a constrained Laplace equation to low-
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pass filtering and steady state diffusion with boundary conditions (see [26])
justifies its inclusion as a filtering method.

Figure 9.14 demonstrates anisotropic interpolation applied to low-pass
filtering (i.e., smoothing) an image. To generate Figure 9.14, a 4-connected
lattice was generated with the weight function of (8.1), based on the Lena
image. Samples were chosen from relatively uniform areas by computing the
sum of the edge gradients incident on each node. All nodes with gradient
sums below a threshold were selected as sample nodes to have their values
fixed. The remaining nodes were anisotropically interpolated, given the fixed
set. One can see that sharp boundaries are maintained, due to the encoding
of image information with weights. Areas of the image with high variability
(e.g., the feathers) are smoothed considerably since very few samples were
taken, while areas with initially low variability remain uniform.

10 Edge finding

Edge detection is a common goal of low-level computer vision. Common
edge detection approaches [39] make use of gradient [57] or Laplacian [45]
operators. An interesting feature of these operators is that although they
both operate on values associated with the node set, the combinatorial gra-
dient operator (the edge-node incidence matrix) returns values on the edge
set while the combinatorial Laplacian returns values on the node set . This
difference is analogous to 3D vector calculus in which the application of both
the gradient and Laplacian operators to a scalar field results in a scalar field
for the Laplacian and a vector field for the gradient. Standard gradient oper-
ators used for edge detection are applied to pixels and return values on pixels
[57, 56, 23], causing the output of a typical gradient or Laplacian-based edge
detection algorithm to be a set of edge-pixels.

The function findedges.m keeps with tradition by returning a set of
edge pixels, regardless of whether a combinatorial gradient or Laplacian-
based edge detection scheme is chosen. In the context of space-variant edge
detection, we have found that better edge detection results are obtained
by using an anisotropic edge operator, where the weights are based on the
Euclidean distance of the point coordinates. The reason for this is that
sensors (nodes) that are located more distant from each other are more likely
to have an intensity change that crosses threshold, even if the continuous
light distribution varies smoothly across a single object. Weighting the edge
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(a) (b)

(c) (d)

Figure 9.14: Anisotropic interpolation used to low-pass filter an image. (a)
Original Lena image. (b) Magnitude of summed image gradients. (c) Samples
taken from lowest magnitude points. (d) Anisotropically interpolated image.
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(a) (b)

(c) (d)

(e) (f)

Figure 10.15: Edge detection on image data on a space-variant image. (a)
The original image: ESLab0032.jpg. (b) A space-variant graph patterned
after the retinal ganglion cell distribution of the labrador [38]. (c) The im-
ported image, before any processing. (d) Result of anisotropic diffusion pre-
processing used to sharpen edges and blur noise. (e) Result of gradient-based
edge detection. (f) Result of Laplacian-based edge detection.
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operator by distance compensates for this effect. Figure 10.15 demonstrates
gradient and Laplacian-based edge detection on a space-variant image. In
order to reduce noise but preserve edges, anisotropic diffusion was performed
before the edge operator was applied. Note that different nodes correspond to
different sized Voronoi regions in the visualization, due to the space-variance,
which results in varying edge width.

11 Segmentation

The use of graph theory for data clustering and image segmentation may
be traced to the work of Zahn on Gestalt clustering [84]. By framing the
segmentation problem in the context of graph partitioning, Wu and Leahy
developed the minimum cut algorithm [83]. Graph partitioning approaches
to segmentation has led to several other algorithms [64, 53, 74, 61]. The func-
tion partitiongraph.m performs a graph bipartition using the isoperimetric
algorithm [32], normalized cuts [64] or spectral partitioning [55]. Convert-
ing a graph bipartitioning algorithm to a complete segmentation may be
accomplished by recursively applying the bipartitioning algorithm to each
new segment and stopping the recursion when a specified metric of partition
quality fails to be satisfied. The function recursivepartition.m recursively
applies partitiongraph.m and returns integer labels of each node such that
nodes sharing the same label are considered to be in the same partition.
Since one often wants to apply these algorithms to standard Cartesian im-
ages, the functions imgsegment.m and imgsegpyr.m input standard images
and return segmentations by using an underlying lattice or pyramid topology,
respectively. The function isosolve.m performs the calculations for comput-
ing the potentials for a single application of the isoperimetric algorithm. An
example of applying the segmentation algorithm to a space-variant image is
given in figure 11.16.

12 Miscellaneous functions

This section details the minor functions included in the Graph Analysis Tool-
box used to manipulate and visualize data.

Three functions used to perform minor graph and matrix manipulation
are adjtoedges.m, circulant.m and removeisolated.m. The function adj-
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(a) (b) (c)

(d) (e) (f)

Figure 11.16: Segmentation of image data in a space-variant image. (a)
The original image: ESLab0043.jpg (b) A space-variant graph patterned
after the retinal ganglion cell distribution of the two-toed sloth [18]. (c)
The imported image, before any processing. (d) Segment labels obtained
using the isoperimetric algorithm [32] (β1 = 20, β2 = 5, stop = 1 × 10−8).
(e) Segmentation result displayed as the outline of segments against a white
background. (f) Segmentation result displayed as black outlines against the
faded image.
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toedges.m converts an adjacency matrix to an edge set. Since shift-invariant
graphs correspond to circulant adjacency and Laplacian matrices, the func-
tion circulant.m is used to generate a sparse circulant matrix from one
row that details the topology of a single node (which suffices to define the
topology of the whole graph, since the graph is shift-invariant). The function
removeisolated.m is used to remove any nodes which are not connected to
any other node.

The functions binarysearch.m, equalize.m and normalize.m provide
additional data processing. The function binarysearch.m implements a
divide-and-conquer search algorithm of a sorted vector for the closest value of
a given input. Normalization of the columns of a matrix to a specified range
(defaulting to [0,1]) is accomplished by the function normalize.m. Histogram
equalization of a vector is performed by the function equalize.m.

Four functions are available to aid in visualization of a segmentation and
the production of segmentation results for publication. Three representations
of a segmentation are returned by segoutput.m and segoutputSV.m: integer
node labels, black outlines of segments against a white background and red
outlines of segments superimposed on the original image. The special case of
Cartesian images is handled by segoutput.m, while the general case of space-
variant images is handled by segoutputSV.m. Since one may want to use the
red-outlined segmentations returned by segoutput.m and segoutputSV.m

in publication, the functions colorseg2bwseg.m and colorseg2bwsegSV.m

convert the red-outlined segmentation to a black-outlined segmentation su-
perimposed on a faded out copy of the original (so as not to confuse the
segmentation lines with image features). Cartesian and space-variant seg-
mentations are handled by colorseg2bwseg.m and colorseg2bwsegSV.m

respectively.
Since there is a frequent need in the Graph Analysis Toolbox for vector-

izing an RGB image, the function rgbimg2vals.m exists for this purpose.

13 Conclusion

The Graph Analysis Toolbox was developed to provide tools for space-variant
computer vision that are independent of sampling regime or a chosen topol-
ogy. Graph theory comprises the primary data structure, and combinatorial
methods are the tools used to process the data. Since graph theoretic data
structures appear in other disciplines with problems of analysis similar to
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computer vision (e.g., segmentation, edge finding), we hope that the tools
developed here may find a wider audience.

Despite the ubiquity of space-variant sensors in biological systems, it is
rare to find artificial space-variant acquisition devices or displays. For this
reason, the Graph Analysis Toolbox allows the simulation of a space-variant
sensor, by providing tools to transfer images acquired with a Cartesian sensor
array to an arbitrary space-variant representation. Likewise, tools are also
available to allow the display of space-variant images on a standard CRT
monitor. In addition to simulation of a space-variant sensor, the Graph
Analysis Toolbox provides the simulation of an active vision system that
allows the simulated space-variant architecture to be directed to different
points in a larger image.

We hope that the Graph Analysis Toolbox will aid researchers in space-
variant computer vision and other disciplines that take a combinatorial ap-
proach to graph theoretic structures.
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1 Function list

This appendix is a reproduction of the Contents.m file.

Generating filters for
space-variant graphs.
contour2pdf.m Convert a contour map to a

probability density function.
ellipsefit.m Fit an ellipse to a polygon

with least-square error.
findfilter.m Compute resampling filters

for a point set.

I/O on space-variant graphs.
importimg.m Import a Cartesian (standard)

image to a space-variant
architecture.

showmesh.m Visualize 2D data (e.g., an
image) on a graph by
interpolating data across the
faces of the nodes.

showvoronoi.m Visualize 2D data (e.g., an
image) on a graph by uniformly
filling the Voronoi cell of each
node with its value.

voronoicells.m Compute Voronoi information
of a graph for visualization.

Data processing on graphs.
diffusion.m Diffuse data on a graph.
dirichletboundary.m Solve the combinatorial Dirichlet

problem on a graph (e.g.,
interpolate missing data).

filtergraph.m Filter data on a graph.
findedges.m Detect edges in data on a

graph.
imgsegment.m Segment a Cartesian (standard)

image using a lattice.
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imgsegpyr.m Segment a Cartesian (standard)
image using a pyramid.

isosolve.m Perform the calculations
required by the isoperimetric
algorithm.

makeweights.m Convert nodal graph data to
edge weights.

partitiongraph.m Segment data on an arbitrary
graph.

recursivepartition.m Recursively segment data on
an arbitrary graph.

Generating node/edge sets
for graphs.
addrandedges.m Add random edges to

“small worldify” a graph.
latticepyramid.m Generate a connected pyramid

from a Cartesian lattice.
knn.m Connect nodes to their nearest

neighbors.
lattice.m Generate a Cartesian lattice

with varying
connectivity.

logz.m Generate a point set using the
w = log(z + a) function describing the
macaque retinotopic map.

roach.m Generate the “roach” graph of
Guattery and Miller.

triangulatepoints.m Compute an triangulated edge
set for an input node set.

Graph matrix generation.
adjacency.m Generate the adjacency matrix for a

node/edge set.
incidence.m Generate the incidence matrix for a

node/edge set.
laplacian.m Generate the Laplacian matrix for a

node/edge set.
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Support functions.
adjtoedges.m Convert an adjacency matrix to an

edge list.
binarysearch.m Perform a binary search of a vector.
circulant.m Generate a circulant matrix (similar

to toeplitz.m).
colorseg2bwseg.m Convert a segmentation indicated

with color to a publishable
(B&W) format.

colorseg2bwsegSV.m Convert a space-variant segmentation
indicated with color to a publishable
(B&W) format.

equalize.m Perform histogram equalization of a
data vector.

normalize.m Normalize data (columnwise) to a
specified range.

removeisolated.m Remove any isolated nodes in a graph.
rgbimg2vals.m Vectorize an RGB image.
segoutput.m Convert a segmentation labeling of a

lattice to a better visualization.
segoutputSV.m Convert a segmentation labeling of an

arbitrary graph to a better visualization.

2 Demo scripts

This section provides a list of demo scripts included in the extended package.
The information presented here is also included in the ContentsDemo.m file.

Edge finding.
findEdgesDemo.m Compute edges for a Cartesian image

using the gradient and Laplacian
edge detectors.

findEdgesDemoSV.m Compute edges for a space-variant
image using the gradient and Laplacian
edge detectors.
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Graph filtering.
diffusionDemo.m Compute iso/anisotropic diffusion on a

Cartesian image.
filterCoordDemo.m Filter coordinate data.
filterImageDemo.m Filter a space-variant image.
interpolationFilterDemo.m Use anisotropic interpolation as an

image filter.

Graph drawing.
drawGraphDemo.m Use isotropic interpolation to smooth

a graph drawing.

Image interpolation.
fovealAnisotropicDemo.m Perform anisotropic interpolation on a

missing image region.
fovealIsotropicDemo.m Perform isotropic interpolation on a

missing image region.
cartesianAnisotropicDemo.m Perform anisotropic interpolation based

on sampling different regions of the
image.

Importing/Visualization.
buildFiltersDemo.m Generate importing filters for a

random point set.
contour2graphDemo.m Generate a graph from a retinal

topography contour image.
differentFoveationDemo.m Foveate on different points in a larger

image.
ellipseDisplayDemo.m Fit ellipses to Voronoi cells of a

randomly generated point set.
generateSVgraphsDemo.m Generate graphs and filters from the

existing set of retinal topography images.
importVisualizationDemo.m Import a Cartesian image to an

imgGraph and visualize.

Segmentation.
clusterPointsDemo.m Cluster a point set (segmentation on

coordinates).
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segmentationSVDemo.m Segment an imgGraph.
segmentationCompareDemo.m Compare segmentation of a Cartesian

image generated by different algorithms.

Pyramids.
pyramidSegmentationDemo.m Compute a segmentation using a

pyramid architecture.

Graph generation.
connectGraphDemo.m Computes and compares graphs with

different topology and geometric
arrangement.

3 Standardized variable names

Throughout the functions, documentation and demos, a set of standardized
variable names are used. The list of variable names and their meanings is
given below, and a reproduction of this list is included in the file variable-

Names.txt.

Scalars.
Q Cardinality of faces set in a graph.
K Dummy constant.
N Cardinality of node set in a graph.
M Cardinality of edge set in a graph.
P Number of coordinate dimensions of a node set.
scale The weighting function parameter.
stop The recursion stop parameter.
X/Y/Z Dimensions of an image or region (e.g.,

[X Y Z]=size(img)).

Matrices.
W The N × N adjacency matrix.
D The N × N diagonal matrix of node degrees.
img The current image.
L The N × N Laplacian matrix.
A The M × N edge-node incidence matrix.
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Vectors.
d The N × 1 vector of node degrees.
vals The N × K vector of K−dimensional nodal

values (e.g., RGB, with K = 3).
weights The M × 1 vector of edge weights.

Graph components.
points An N × P list of node coordinates.
edges An M × 2 list of edges (containing indices to

the node set).
faces A Q × K list of polygonal faces with order ≤ K.

Structs.
imgGraph Struct containing the filters for importing an

image to a space-variant graph.
imgGraph.pntMap A K × 2 list of the K points in the image plane

used to filter an image for importing.
imgGraph.breakpoints A 1 × N list of the breakpoints in

imgGraph.pntMap referring to the points
corresponding to different nodes.

imgGraph.filtWeights A K × 2 list of the filter weights for each of
the K points in imgGraph.pntMap.

voronoiStruct Struct containing the information necessary to
perform Voronoi visualization on a space-variant
image.

voronoiStruct.pts K × 2 list of coordinates for the vertices of the
Voronoi cells for the node set, where K > N .

voronoiStruct.index List of nodes that are represented in the
visualization (i.e., nodes with a Voronoi cell
within the convex hull of the node set).

voronoiStruct.faces List of faces representing the Voronoi cells, to
be used by patch.m.
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(a) Baboon [79] (b) Beagle [52] (c) Cat [37] (d) Cheetah [38]

(e) Cow [38] (f) Deep-sea
bass [15]

(g) Deer [38] (h) Bottlenosed
dolphin [46]

(i) German
shepherd [52]

(j) Harlequin
tusk fish [16]

(k) Plains kan-
garoo [36]

(l) Tree kanga-
roo [36]
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(m) Sacred kingfisher
[50]

(n) Labrador [38] (o) Pig [38]

(p) Pigeon [79] (q) Rabbit [35] (r) Two-toed sloth [18]

(s) Squirrel [38] (t) Wolf [52] (u) Yellow-finned
trevally [14]
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4 Included retinal topographies

This section shows the probability density function (PDF) obtained from the
retinal topographies of ganglion cell density for the species included in the
Graph Analysis Toolbox. Darker areas represent higher ganglion cell den-
sity, while lighter areas represent a lower ganglion cell density. In addition to
having different visual sampling arrangements, different species have vary-
ing degrees of nonuniformity in the sense that the discrepancy between the
most dense and most sparse regions of ganglion cells may be 2 : 1 in some
species and 100 : 1 in others. Since each image given below is normalized to
have unity sum, the species with a greater ratio of dense to sparse areas are
displayed as nearly white with a small dark region, while species having a
lower ratio of dense to sparse regions are displayed as a more uniform gray.
However, since the topographic maps for different species were studied by
different researchers who stopped counting cell densities at different points
in the retinal periphery, the topographies (and hence the images here) may or
may not represent an actual comparison between species as regards the dis-
crepancy between the region of highest cell density and the region of lowest
cell density.
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