IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. XX, XXXXXXX 2010 1

Minimal Surfaces Extend Shortest Path
Segmentation Methods to 3D

Leo Grady, Member, IEEE

Abstract—Shortest paths have been used to segment object boundaries with both continuous and discrete image models. Although
these techniques are well defined in 2D, the character of the path as an object boundary is not preserved in 3D. An object boundary in
three dimensions is a 2D surface. However, many different extensions of the shortest path techniques to 3D have been previously
proposed in which the 3D object is segmented via a collection of shortest paths rather than a minimal surface, leading to a solution
which bears an uncertain relationship to the true minimal surface. Specifically, there is no guarantee that a minimal path between
points on two closed contours will lie on the minimal surface joining these contours. We observe that an elegant solution to the
computation of a minimal surface on a cellular complex (e.g., a 3D lattice) was given by Sullivan [47]. Sullivan showed that the discrete
minimal surface connecting one or more closed contours may be found efficiently by solving a Minimum-cost Circulation Network Flow
(MCNF) problem. In this work, we detail why a minimal surface properly extends a shortest path (in the context of a boundary) to three
dimensions, present Sullivan’s solution to this minimal surface problem via an MCNF calculation, and demonstrate the use of these
minimal surfaces on the segmentation of image data.

Index Terms—3D image segmentation, minimal surfaces, shortest paths, Dijkstra’s algorithm, boundary operator, total unimodularity,
linear programming, minimum-cost circulation network flow.

4

1 INTRODUCTION

HORTEST path algorithms on weighted graphs have found

many applications in computer vision, including seg-
mentation [34], [16], centerline-finding [7], video summar-
ization [38], robot navigation [11], perceptual grouping [13],
solving PDEs [51], and optical flow [48]. Since computer
vision techniques have been increasingly applied to 3D data
in the context of video sequences or medical acquisitions,
researchers have looked for 3D extensions of many
conventional 2D techniques. Several of the proposed
extensions of the shortest path techniques to 3D have
employed a network of paths that are used to define the
surface of the 3D object. Unfortunately, there is no
guarantee that these shortest paths will lie on the minimal
surface or that a dense enough sampling of paths will
approach the true minimal surface, even in the limit.
Instead of employing a network of paths in 3D, we observe
that the minimal surface may be solved for directly using
the elegant solution provided by Sullivan [47] in the context
of discrete differential geometry.

Shortest paths are used as object boundaries in several
2D image segmentation algorithms, most notably in the
popular intelligent scissors/live wire algorithm [34], [16].
The intelligent scissors algorithm treats the image as a
graph that is weighted to reflect intensity changes and
inputs two points from a user along an object boundary.

e The author is with Siemens Corporate Research, Department of Imaging
and Visualization, 755 College Rd., East Princeton, NJ 08540.
E-mail: leo.grady@siemens.com.

Manuscript received 6 Oct. 2007; revised 11 July 2008; accepted 18 Nov.
2008; published online 2 Dec. 2008.

Recommended for acceptance by R. Zabih.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2007-10-0675.

Digital Object Identifier no. 10.1109/TPAMI.2008.289.

0162-8828/10/$26.00 © 2010 IEEE

These points are then used to define the endpoints for a
shortest path computation. The shortest path is then viewed
as a piece of the object boundary that may be extended by
the placement of additional points. In 2D intelligent
scissors, shortest paths provide minimal boundaries of the
segmented object.

A sustained interest in intelligent scissors/live wire has
prompted several researchers to pursue a 3D extension of
this segmentation technique. However, it was noted as
recently as 2006 by Armstrong et al. [5] that “There is no
straightforward extension of Live Wire to surfaces.”
Although various different extensions to intelligent scissors
have been proposed, the common theme is that intelligent
scissors is fundamentally a path-based technique, and
therefore, 3D extensions have focused on the reconstruction
of 3D surfaces from networks of paths.

Falcao and Udupa [15] separate the 3D image into slabs
for which the object is assumed to have constant genus. A
user then employs the shortest path segmentation on several
cross sections (with some constraints) which are used for
surface reconstruction. This technique was extended [23] to
include a more sophisticated choice of point ordering within
the cross sections for connection via shortest paths. Schenk
etal. [41], [42] employ intelligent scissors to obtain a series of
closed contours on key slices, between which a surface is fit
using shape-based interpolation. Salah and Bartz [40] use
intelligent scissors to find a 2D segmentation in one slice
and then use a sophisticated propagation of the control
points to subsequent slices, upon which 2D intelligent
scissors is subsequently run. Knapp et al. [26] employ
orthogonal cross sections to reconstruct the surface, which
may have a nontrivial topology. These cross sections are
obtained via shortest paths. Koénig and Hesser [29] find the
shortest path connecting three clicked points, producing a
closed surface patch. This patch is then filled in using a

Published by the IEEE Computer Society

(@) (b)

Fig. 1. An example for which shortest paths joining two contours will not
lie on the minimal surface connecting the contours. (a) The catenoid is
the classical solution to the minimal surface problem joining two closed
contours at different elevations. (b) A shortest path (red) joining two
points on the closed contours does not lie on the surface of the catenoid.

network of shortest paths and this process of producing and
filling surface patches is repeated until a closed surface is
obtained. Finally, although not a direct extension of
intelligent scissors to 3D, Li et al. [31] propose a method
that will produce a minimal surface, provided that the
minimal surface satisfies some constraints. These con-
straints require that the surface is simply connected and
possesses the property termed by Li et al. [31] as “terrain-
like” (a ray cast from the central axis/point of the object
intersects the surface only once). We note that such an object
is also known as “star shaped.” Their primary objective was
to provide a framework in which a minimal surface could be
obtained that also satisfied secondary objectives, such as
smoothness or an inner/outer relationship of two surfaces.

One may also view the use of shortest paths in the
continuum as a continuous counterpart of the intelligent
scissors/live wire segmentation paradigm [14]. In contrast
to discrete shortest paths, the continuous shortest paths are
computed with the fast marching method [44]. This
continuous shortest path segmentation approach has also
been extended to 3D segmentation by Ardon et al. [3], [4]. In
the first work [3], a series of shortest paths were used to join
a point (or closed contour) with a closed contour, which
were then interpolated to form a surface. The second work
[4] finds the surface via a level-set problem constrained
such that the network of shortest paths lies on the surface.
As with discrete methods, these approaches construct a
surface from a network of shortest paths, rather than
extending the shortest path problem of 2D to the minimal
surface problem of 3D.

The approaches reviewed above operate under the
assumption that the 3D surface upon which the shortest
paths are found will be minimal. However, it is possible
that shortest paths joining two closed contours will not lie
on the minimal surface connecting these two contours. For
example, it is well known that, in continuous euclidean
space, the minimal surface connecting two closed contours
at different elevations is a catenoid. However, the shortest
paths joining any two points on these contours will not lie
on the surface of the catenoid. Fig. 1 illustrates this
situation. This counterexample demonstrates that the
technique of using shortest paths to find minimal surfaces
can never be guaranteed to produce the correct result, even
by using paths of arbitrary density. Therefore, instead of

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. XX, XXXXXXX 2010

adopting the use of shortest paths to find the minimal
surface, we observe that the minimal surface may be solved
for directly using Sullivan’s method. Finally, in addition to
the problems mentioned above, we note that another
problem with using shortest paths to define a surface in
3D is that 1D paths are of the wrong dimension type to
bound 3D objects (i.e., application of the boundary operator
to a 3D object produces a 2D surface).

1.1 Characterization of Minimal Path/Surface
Problems

Minimal surfaces have been studied extensively outside of
computer vision in the fields of geometric measure theory
and variational calculus [33]. However, these fields focus on
finding minimal surfaces in a space that is continuous and
euclidean, rather than on the discrete, weighted lattices that
arise naturally in computer vision. In order to avoid
confusion with this body of existing literature, we will
employ the term minimum-weight surfaces to refer to
minimal surfaces defined on the space of discrete, weighted
lattices. Although lattices are the most relevant structure for
computer vision, the techniques presented here also apply
to more general discrete structures.

The shortest path problem with nonnegative edge
weights requires specification of additional constraints in
order to avoid the solution of a null path. Additional
constraints are typically included in one of two forms.

1. The shortest path is required to enclose one specified
region of space while excluding a second specified
region (i.e., separating the two regions).

2. The shortest path is required to have a specified
boundary (i.e., endpoints).

These methods for specifying constraints for the minimal
path problem will be referred to as Type I and Type II
constraints, respectively. Type I constraints give rise to a
source separation problem that is solved efficiently on
discrete spaces by Ford and Fulkerson’s max-flow/min-cut
algorithm [37]. Type II constraints give rise to a source
connection problem that is solved efficiently on discrete
spaces by Dijkstra’s algorithm [37]. Note that if negative
edge weights were permitted (e.g., derived from a
probabilistic formulation of the segmentation problem),
then no constraints of the above types would be necessary
to avoid the null solution. However, finding the global
minimum of the path/cut problem with negative edge
weights on an arbitrary graph is, in general, difficult (see
[28] for a survey of this problem in the context of computer
vision). It should be noted that the minimum-cut problem
with negative weights may be solved exactly in polynomial
time on planar graphs (2D) [22], [1], [46]. Finally, we
recognize that the value of targeting energies for which a
global optimum exists is a point of debate within the
community. In this work, we simply note that there has
been a sustained interest in finding a solution for the 3D
extension of the short path problem (minimal surfaces) with
nonnegative weights. Since a global minimum does exist for
this problem and the previous heuristics reviewed above
are not guaranteed to find it, we simply demonstrate that
this problem may be solved using Sullivan’s method.

Type I and Type II constraints are also necessary in the

specification of minimum-weight surfaces in order to avoid

GRADY: MINIMAL SURFACES EXTEND SHORTEST PATH SEGMENTATION METHODS TO 3D 3

the null solution (given nonnegative edge weights). The
minimum-weight surface problem with Type I constraints
is equivalent to solving the max-flow/min-cut problem in
3D, which has known solutions in both continuous [2] and
discrete spaces [37]. The problem of how to assign graph
weights to best approximate the continuous solution to a
Type I problem was studied in [10]. Type II constraints
require that the minimum-weight surface has a prescribed
boundary. Surface boundaries are always given by closed
contours, an example of which is the wire rim giving the
boundary of a soap bubble. The minimum-weight surface
problem with Type II constraints has been studied in
continuous space as Plateau’s problem (e.g., [33]), but less
attention has been paid to finding minimal surfaces with
Type II constraints in discrete space. There are only two
works that we are aware of that address the problem of
solving for minimal surfaces with Type II constraints on a
discrete space (although it should be noted that the primary
goal of both of these works is the approximation of the
continuous solution). The first of these papers is the work of
Kirsanov and Gortler, who considered the limited case in
which it is possible to translate Type II constraints into
Type I constraints [25]. Unfortunately, for most cases of
interest to computer vision, their formulation is not
applicable since the prescribed boundary must lie on the
borders of the volume. Sullivan [47] addresses the problem
of approximating continuous minimal surface solutions
with discrete cell complexes and recognized that the
problem could be viewed as an instance of Minimum-cost
Circulation Network Flow. Although Sullivan’s interest was
in the approximation of continuous minimal surfaces, we
demonstrate the utility of Sullivan’s technique for comput-
ing minimum-weight surfaces in the context of image
segmentation. These computational details will be dis-
cussed more thoroughly in Section 2.3.

Since Type II constraints govern shortest path problems
on 2D weighted graphs, our focus is on the solution of the
Type II constrained minimum-weight surface problem on
3D weighted graphs. Although it may be argued that object
surfaces are in some sense continuous, the standard
reconstruction of image data as a discrete lattice has led
many researchers to adopt discrete algorithms to analyze
the image data. Sullivan and Kirsanov/Gortler both treated
the case of continuous minimal surfaces with Type II
constraints by approximation via a cell complex. However,
given image data arranged in a 3D lattice and the adoption
of surface weights from the image content, it is unclear how
to formulate or solve the weighted continuous minimal
surface problem in this context. Consequently, by adopting
the discrete formulation on a 6-connected lattice, for which
formulation and solution may be done efficiently, one could
view the resulting minimal surfaces as approaching the
continuous minimal surfaces in the limit of small grid size
and the presence of an ¢; norm.

Neither Type I nor Type II constraints have priority over
the other, ie. different applications call for different
constraint types. As evidence for this position, we note the
enduring interest in both (2D) graph cuts [9] and intelligent
scissors [34], [16], despite the fact that graph cuts apply
Type I constraints and intelligent scissors applies Type II
constraints to the shortest path problem. Additionally, our
goal is not to argue that minimum-weight surfaces are the

best tool for 3D segmentation, taking the position that graph
cuts have already established interest in this problem (albeit
with Type I constraints). In fact, computer vision using
minimal surfaces with Type I constraints has been heavily
studied and applied [12], [39], [9]. Our intention is that the
method for solving Type II minimal surface problems
presented in this work will permit new applications of
minimal surfaces to computer vision beyond segmentation.
Additionally, previous attempts to extend intelligent scis-
sors to 3D indicate a clear interest in the resolution of this
problem. However, these previous treatments have not
solved for the minimum-weight surface directly.

This paper is outlined as follows: In Section 2, we show
how the extension of the shortest path problem to 3D leads
to the minimum-weight surface problem. Sullivan’s method
for solving this minimum-weight surface problem is then
presented. In Section 3, we demonstrate the application of
this algorithm to synthetic 3D segmentation problems of
various character, and then, apply the algorithm to real 3D
data. Finally, Section 4 provides concluding remarks and
suggests directions for further research.

A conference version of this work previously appeared
in [21].

2 METHOD

In this section, we first outline a framework for viewing
graph-based algorithms that produce boundaries in an
image. This framework is based on the notion of a primal
and dual lattice. Using this framework, we review the
shortest path problem and present the minimum-weight
surface problem. We conclude this section by giving an
exposition of Sullivan’s method [47] for solving the
minimum-weight surface problem with Type II boundary
conditions on a cellular complex (e.g., a 3D lattice) by
reducing the computation to finding a Minimum-cost
Circulation Network Flow [20].

2.1 Duality

The notion of duality has played a role in graph theory (and
combinatorial topology) since the time of Poincaré, in which
a dual graph was defined from a planar graph by replacing
each facet (cycle) with a dual node and connecting two
nodes if their respective facets shared an edge. In this
example, the primal graph is defined as the initial planar
graph and the dual graph is defined as the result of the
duality operation. However, this duality operation is more
general in the context of algebraic topology [30] and, in fact,
depends on the dimensionality of the ambient space in
which the graph is embedded. In fact, a clear understanding
of duality has recently come to the forefront of numerical
computing (see [32] for an excellent treatment). In a general
context, the standard node/face duality may be thought of
as the 2-dual, in the sense that nodes are isomorphic to 2D
simplices (i.e., facets). For example, one could just as easily
define a 1-dual of a graph by replacing each edge with a
node and connecting nodes based upon whether or not their
respective edges coterminated at a node (this 1-dual is
sometimes called the line graph). In general, a traditional,
d-dimensional dual is possible when each (d — 1)-dimen-
sional simplex is shared by exactly two d-dimensional

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. XX, XXXXXXX 2010

Primal Dual
Node []
Edge ——»
Face @

Dual

(7
Edge —» I:l
O
Volume @ ®

Primal

Node o

Face

(a) (b)

(©) (d)

Fig. 2. Duality in two and three dimensions. (a) Primal and dual structures for a 2D, 4-connected lattice. (b) The primal (black) and dual (blue/gray)
2D lattices. (c) Primal and dual structures for a 3D, 6-connected lattice. (d) The primal (black) and dual (blue/gray) 3D lattices. Identifying image
pixels with nodes in the primal lattice, edges of the dual lattice define a separating boundary of the pixels in 2D. In contrast, facets of the dual lattice
are required to “box in” the voxels of the primal lattice in 3D. In 2D, the dual edges correspond to the “cracks” or “bels” between pixels often

mentioned in the context of intelligent scissors/live wire [16].

simplices. Fig. 2 offers a picture of the relationship between
the primal and dual complexes. In general, given a
k-simplex in p dimensions, its dual will be a (p — k) simplex
[32]. Fig. 2 illustrates simplices and their duals for two and
three dimensions.

The duality operation naturally produces an “outside
facet” (representing the edge/facet that a path/surface
would need to include in order to enclose pixels/voxels on
the border of the data, see Fig. 2), but this outside facet may
be given several interpretations. For example, one might
assign the outside facet to a single node in the dual graph.
Instead of this construction, we have chosen to subdivide
the outside facet in the dual into cells for two reasons: 1) A
lattice is easier to work with computationally and 2) the
addition of weighted extra edges/facets on the outside
allows for a higher cost to be assigned to a longer path/
surface enclosing the border pixels/voxels.

Duality offers a convenient taxonomy of graph-based
segmentation algorithms. There are two basic types of
graph-based segmentation algorithm: implicit boundary
algorithms and explicit boundary algorithms. Implicit
boundary algorithms, such as graph cuts [9] or normalized
cuts [45], label each node (pixel) as foreground /background
and the boundary between them is implied by the labeling.
In contrast, explicit boundary algorithms, such as intelligent
scissors [34], [16], identify the boundary explicitly and a
foreground/background labeling is given implicitly. The
notion of duality provides a convenient way of viewing
these segmentation algorithms in which one may treat the
image data as existing at the nodes of the primal lattice. In
this framework, implicit boundary algorithms operate on
the primal lattice, while explicit boundary algorithms
operate on the dual lattice. Therefore, the components of
the dual lattice are used to “box-in” the pixels in the primal
lattice (e.g., edges/paths in 2D, facets in 3D). However, as
illustrated in Fig. 2, the corresponding dual lattice changes
with dimension, while the primal lattice remains constant,
prompting the need for greater modification of explicit
boundary algorithms than implicit boundary algorithms
when seeking extension to higher dimension.

Specifically, the popular graph cuts algorithm of [9]
provides (Type I) fixed conditions at the nodes of the primal
lattice and seeks a minimal cut (dual to a closed contour)
between the source and sink nodes. In contrast, the
intelligent scissors approach of [34], [16] fixes points along
the boundary (Type II) in the dual lattice (sometimes,
referred to as the “cracks” or “bels” between the pixels [16])
and seeks the minimal boundary (path) that includes these
endpoints. When considering higher dimensional images,
graph cuts extend naturally, because edge cuts are always
dual to the (p — 1)-surfaces that define the boundary of a
p-dimensional set of voxels. However, the explicit boundary
approach given by intelligent scissors must be redeveloped
for each dimension. Specifically, since the shortest path
algorithm used in the 2D case is inappropriate to find a
bounding surface in 3D, a minimum-weight surface must
be used.

2.2 Preliminaries

Before beginning the exposition, we fix our notation. For our
present purposes, the primal and dual complexes will be 3D,
6-connected lattices. Define a 3D lattice complex [30] as
consisting of a set P = (V,E, F,C) with vertices (nodes)
veV,edgesec ECV xV, facets fe FCEXxExXEXE,
and cubes (volumes)c € C C F x F x F'x F' x F x F (since
we will be dealing exclusively with 6-connected lattices). Let
n = |V| and m = |E|, where | - | denotes cardinality. Nodes,
edges, facets, and cubes will all be indexed by single
subscripts. A weighting assigns a value to each edge called
a weight. The weight of an edge ¢; is denoted by w; and
considered in this work to be nonnegative.

To each edge, we may assign an ordering of its
constituent vertices, i.e., we associate with edge ¢;; the pair
{vi,v;}. Likewise, for each facet, we may associate an
ordering of the vertices obtained by traversing its constitu-
ent edges in a closed cycle, ie., {v;,v;,v;,v,} in which
€ij, €jks €rh, € € E. If the node ordering associated with an
edge is in the same order in which the nodes are traversed
on a facet, then we consider the facet and edge to have a
coherent orientation [24]. Note that the notion of orientation
and coherency used here for the degenerate simplices that
comprise facets of a 6-connected lattice exactly matches the

GRADY: MINIMAL SURFACES EXTEND SHORTEST PATH SEGMENTATION METHODS TO 3D 5

standard parity definitions for nondegenerate simplices
using the combining technique presented by Tonti [49].

We wish to stress that, although, in this work, we are
treating the standard 6-connected lattice found in computer
vision, the problem considered here (finding minimum-
weight surfaces with Type II boundary conditions) may be
solved using Sullivan’s method for any orientable cell
complex with trivial homology. Additionally, results are
given in Appendix B that give more general conditions
under which the minimum-weight surface problem can be
solved using linear programming (e.g., when the complex is
not cellular). A cell complex is defined by stating that for
each dimension k < d, for maximum dimension d, there is a
set Cy, of k-dimensional cells (homeomorphic to balls), such
that all the cells are disjoint and the boundary of any k-cell
is the union of a finite number of lower dimensional balls. If
each (d— 1)-dimensional facet bordering a d-dimensional
cell is part of the boundary of exactly two d-dimensional
cells, then the minimum-weight hypersurface may be
calculated, since such a complex is dual (isomorphic) to a
graph in which d-dimensional cells are mapped to nodes
and (d —1)-dimensional facets are mapped to edges.
Consequently, the corresponding d-(d — 1)-incidence matrix
is totally unimodular.

Graph-based segmentation algorithms typically focus on
partitioning a weighted graph, with weights given on the
primal edges via a function of the image intensity, e.g.,

w; = exp (—6(1; - Ik)Q) for {vj, vi} € e, (1)

where [; indicates the image (volume) intensity at voxel v;.
Note that several other functions [8] or features (e.g., color,
texture response) have also been used to set edge (facet)
weights.

2.2.1 Shortest Paths
The minimum-path problem may be viewed as the solution
to the optimization problem

min Q(y) = Z wiyi, (2)
where y; represents an indicator vector on the set of (dual)
edges, with w; representing the weight of the corresponding
primal edge, y; = 1 indicating that edge e, belongs to the
path, and y; = 0 indicating that edge e; does not belong to
the path.

In the absence of constraints, the solution of (2) yields the
vector y; = 0Ve; € E, since all weights are nonnegative.
Type I constraints may be introduced by specifying disjoint
node subsets that must appear in separate connected
components if the edges in the computed path are removed
from the complex. Type II constraints may be introduced by
specifying endpoints for the path. An algebraic formulation
of Type II constraints is given by

Ay =p, (3)

where p is a vector of all zeros except for a p, =1 and
p; = —1, for endpoints {v;,v;}. The matrix A is the node-
edge incidence matrix

+1 if k=1,
Avk,cu = -1 ifk= Js (4)
0 otherwise.

The node incidence matrix in (3) plays the role of the
boundary operator [30]. In this case, the boundary operator
inputs an edge path (indicated by) and returns the nodal
boundary of that path (fixed by p). In general, the boundary
operator inputs the indicator function of a complex and
outputs an indicator function of its boundary. Therefore,
use of the boundary operator in (3) allows us to fix the path
boundary and succinctly expresses the Type II constraints
for the minimal path problem. We note that this formula-
tion of the minimal path problem is not new. For example,
Papadimitriou and Steiglitz [37] establish the minimal path
problem as the optimization of (2) with respect to (3) and
proceed to derive Dijkstra’s algorithm as a particular
optimization of these equations.

2.2.2 Minimum-Weight Surfaces

In order to increase the dimensionality of the shortest path
formulation, we now pass from minimal paths to
minimum-weight surfaces. Fortunately, the dimensionality
of the minimal path problem may be increased simply by
using the dimension-appropriate incidence matrix (bound-
ary operator) and boundary vector p. This dimension-
increased shortest path problem, therefore, asks the
question: Given the boundary of a 2D surface (i.e., a closed
contour or series of closed contours), find the minimum-weight
2D surface with the prescribed boundary. As anticipated in
Section 1, this is the minimum-weight surface problem
with Type II conditions.

In this dimension-increased problem, the incidence
matrix (boundary operator) in question is the edge-facet
incidence matrix defined as

+1, if the edge borders the facet
with coherent orientation,
B.j =4 —1, if the edge borders the facet (5)

without coherent orientation,
0, otherwise.

Note that it is essential in the following development to
include each facet twice in B with opposite orientation.
Such a device is also present when solving the shortest path
problem, since any path could be traversed in either
direction. Instead of the lower dimension boundary vector
p, we can now employ the vector r as a signed binary
indicator vector of a closed contour with an associated
ordering of vertices obtained via a traversal along the edges
comprising the contour. Given a contour represented by an
ordering of vertices (a,b,c,...,a) such that each neighbor-
ing pair of vertices is contained in the edge set, the contour
may be represented with the vector

+1, if the vertices comprising edge e; are
contained in the contour with
coherent orientation,

if the vertices comprising edge e; are (6)
contained in the contour without
coherent orientation,

0, otherwise.

i = —1,

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. XX,

i A
P4 Ps Pg
L > 2
A €,
&,
©3
7 3 T 3 7 3
es @ es @ e7 94
Cs
S
. -
e
P e Py ! Ps i

XXXXXXX 2010

Py P2 P3s Py Ps Ds_ B € 8 B © & & &
= AR
1 1 f, i =1 4
=1 fal-1-1 1 1 1 1
=1 3
=1 1
-1 1
=1 1
B =AT
Pa [33_ 8 &, B3 € €5 € &

Fig. 3. Example of a small 2D lattice consisting of nodes, edges, and facets with various orientations, and the corresponding node-edge incidence
matrix and edge-facet incidence matrix. The complex representing the 2-dual of the primal complex is also provided, illustrating that the incidence

matrices are transposes of each other.

Therefore, the minimum-weight surface problem is

mzinQ(z) = ZW% -

subject to Bz =r,

where 7z is a nonnegative vector indicating whether or not a
facet (in the dual complex) is present in the minimum-
weight surface (and with what multiplicity) and w; is meant
to indicate the weights of a facet. Since the facets in the dual
lattice correspond to edges in the primal lattice (where the
image data are located), (1) may be used to produce the set
of facet weights.

The minimum-weight surface problem described in (7)
was extensively treated by Sullivan, who showed that a fast
algorithm exists for its solution. In the next section, we
present Sullivan’s method for efficiently solving this
problem. In Appendices A and B, we address in more
detail when a solution to (7) exists and when it may be
solved using generic linear programming (e.g., if the
complex is not cellular, as required by Sullivan’s method).

2.3 Minimum-Cost Circulation Network Flow

In order to arrive at a fast MCNF algorithm for solving the
minimum-weight surface problem, Sullivan transforms the
original problem in (7) into a second problem. Specifically,
Sullivan observed that if the RHS of (7) is generated by some
surface that does not self-intersect, represented by the
vector 2, then

r= BZO.

(®)

Therefore, the constraint in (7) may be rewritten as

Bz = Bz, 9)

which reveals that
B(z— z) =0, (10)
Cr=z— 2z, (11)

for some matrix C representing the null-space of B. The
entire optimization problem of (7) may then be recast in
terms of this new variable z as

minw’ (Cz + z),
T

s.t.— Ce =2y — 2 < 2z, (12)

x> 0.

The first inequality is true because z is nonnegative and the
second inequality may be asserted since Ck =0 for any
constant vector k, when C represents an edge-node
incidence matrix (see below). In other words, by assuming
that there exists an integer solution to (7), the initial integer
programming problem of (7) can be transformed into a
second integer programming problem (12).

A boundaryless set of facets (i.e., enclosing a volume)
represented by an indicator vector ¢y would necessarily take
a zero if the boundary operator were applied, i.e., Bcy = 0. A
basis set of such ¢; vectors would then generate the columns
of the null-space C. In the same manner as (17), C' maps
volumes to facets and is well known to be the volume-facet
incidence matrix [32]. In the case of the 6-connected lattice in

GRADY: MINIMAL SURFACES EXTEND SHORTEST PATH SEGMENTATION METHODS TO 3D 7

Primal Dual
Node ® @
A
Edge-Node i Volume-Face
inc. mat. CT C v inc. mat.
Edge > I:I
Face-Edge ‘ BT B Face-Edge
inc. mat. v inc. mat.
Face l:l e
Volume-Face ‘ AT A Edge-Node

inc. mat. ¥ inc. mat.

Volume @ @

Fig. 4. Comparison of incidence matrices in the primal and dual 3D
lattice. The incidence matrix mapping a d-dimensional complex to a
(d — 1)-dimensional complex in the dual lattice equals the transpose of
the incidence matrix mapping the (3 — (d — 1))-dimensional complex to a
(3 — d)-dimensional complex in the primal lattice (e.g., the complex in
Fig. 3). For this reason, it may be seen that the volume-facet incidence
matrix of the dual lattice (in which we are working) equals the edge-node
incidence matrix in the primal lattice. Since any edge-node incidence
matrix is totally unimodular and total unimodularity is preserved under
the transpose operation, the facet-edge incidence matrix in our dual
lattice is also totally unimodular.

a 3D image, each volume is identified directly with a voxel. If
the volumes are such that each facet is shared by exactly two
volumes, incident with opposite orientation, then C can be
seen to be the edge-node incidence matrix of another complex,
specifically the primal complex, where each volume is
identified with a node and each edge is identified with a
facet (shared by two volumes in the manner than an edge is
shared by two nodes). Note that the overrepresentation of
each facet by two facets with opposite orientation generates
more “volumes” in the null-space (enclosed by the facet with
both orientations) which may be interpreted as extra nodes
that are connected between each neighboring voxel. When
each facet in the complex is shared by exactly two volumes as
in the case of a 6-connected 3D lattice, then C'is an edge-node
incidence matrix and is, therefore, necessarily, totally
unimodular [35]. Consequently, for our purposes, (12) is
guaranteed to produce an integer solution (which also
implies that LP is guaranteed to produce an integer solution
when applied to the original integer programming problem
of (7), see Appendix B). The identification of incidence
matrices in the primal and dual lattices is illustrated in Fig. 4.
Note that if the domain is more complicated than a
6-connected lattice (e.g., representing a 3-torus), the
matrix C' may not correspond to the node-edge incidence
matrix of some primal graph. However, as mentioned above,
we only treat the case of an orientable cell complex with
trivial homology (specifically, the 6-connected lattice).
Although the total unimodularity of the constraint
matrix C' and integrality of zy guarantee that x is integer,
there is no guarantee that x will be binary. For example,
addition of any constant to = will still satisfy the constraints
and give the same value for the objective function. However,
even nontrivial cases may occur in which the solution z is
nonbinary. For example, it would be possible to construct

the weighting and contours just right such that the final
solution would consist of two nested “bubbles” in which
case the inner “bubble” could take nonbinary integer values.
In practice, however, we follow Sullivan by solving the dual
problem, and thus, never actually compute the values for z.

Although the problems defined by (12) may be solved
with a generic LP solver, Sullivan went a step further to
show that it is possible to apply a specialty solver to (12)
that yields an even faster solution [47]. To see how Sullivan
used a Minimum-cost Circulation Network Flow (MCNF)
algorithm to solve (12), we begin by forming the dual LP
problem to (12) in terms of variable f:

mfax — zgf,

st. CTf < T, (13)

/>0

We now decompose the solution f into the sum of two
vectors f = f — f' such that

CTf < CTw, (14)

cTf =o. (15)

However, f=w is the only value satisfying (14). This
statement may be shown by recalling that C” is the node-
edge incidence matrix of the primal complex, which implies
that 17C"v = 0 [6]. Consequently, if f satisfies C7 f = CTw,
then there is no v satisfying C7(f 4 v) < CTw since it would
imply that there exists a v satisfying CTv < 0.

Since f is a constant, we may treat f’ as the variable to be
optimized over. Rewriting (13) as an optimization over [’
gives us

T ¢!
Hlf(‘/iX 2 f

st. CTf =0, (16)

f<f=w

This optimization problem asks us to find the maximum
divergence-free flow (on the edges of the primal graph) that
passes through the initial surface 2, with capacities given by
the graph weights. As (16) represents the dual to our original
problem, it is the saturated set of primal edges (dual facets)
that comprise the desired minimum-surface solution. It was
recognized by Sullivan that the optimization described by
(16) is the MCNF problem [47], which may be solved using a
variety of existing algorithms [20]. The work of Kolmogorov
[27] provides a fast method for applying the primal-dual
MCNF algorithm of Ford and Fulkerson [17], [18] by
eliminating the need for Dijkstra computations. The timings
reported here are based on the application of Kolmogorov’s
method (and code available from his Website).

The MCNF approach represents the best-known algo-
rithm for solving an LP problem of the form (12) and,
consequently, for computing the 3D minimum-weight sur-
face on real data, given one or more surface boundaries. We
note that the MCNF approach to solving (12) represents a
primal-dual algorithm to the linear programming problem,
and consequently, is likely to be the most efficient method. To

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. XX, XXXXXXX 2010

date, we are not aware of a corresponding primal-dual
algorithm for the original linear programming problem of (7).

The use of (12) and, consequently, an MCNF procedure
depends on our ability to form a node-edge incidence
matrix of a primal graph that spans the null-space of the
facet-edge incidence matrix of the original (dual) graph. In
computer vision, when employing a 6-connected lattice, an
MCNF procedure is available. However, for general
problems, such a procedure may not be available since
the dual graph is unknown (or the basis of the null-space
for Bis not totally unimodular). In Appendix B, we treat the
more general case by characterizing the complexes (repre-
sented by a B matrix) that allow the minimal surface to be
found by applying linear programming to (7).

2.4 Finding an Initial Surface

The MCNF approach presented above presupposes that it is
possible to find some solution z, that satisfies (8). Given the
application paradigm of joining the 2D segmentations
obtained via an outside algorithm (e.g., 2D intelligent
scissors), we may assume that the initial closed contours
are nonintersecting and exist on one or more axis aligned
slices in the 3D data. Consequently, the initial z, can be
computed by including all facets in the connected compo-
nents of the slices in the interior of the provided contours.
Although this method generally produces a disjoint z, it
should be noted that z is allowed to consist of multiple sets
of facets, so long as the constraint (8) is satisfied.

In a more general application of this minimum-weight
surface technique, our input contours may not be axis
aligned with the data. For example, our 2D contours could
be generated via an automatic technique that does not
respect the axis alignment. In these more general situations
where it is not easy to find an initial contour, there are two
possibilities. If the initial contours are compact and roughly
planar (even if that plane does not align with the data axes),
then the more general LP method defined by solving (7)
(and detailed in Appendix B) could be used with unity
weighting to quickly find some initial z, which could then be
employed by the MCNF algorithm. However, if the input
2D contours are more complicated (e.g., nonplanar), then
the LP method could still be applied directly to the
weighted complex to produce the optimal solution, albeit
more slowly than the MCNF algorithm.

2.5 Algorithm Summary

In the previous sections, we have shown that the natural
extension of the shortest path problem to higher dimension
leads to a solution of the minimum-weight surface problem.
This problem may be solved efficiently using Sullivan’s
method, which ultimately requires the solution to an MCNF
problem. As a segmentation algorithm, we input a closed
contour (or series of closed contours) and return a
minimum-weight surface. Since closed contours are the
output of standard (2D) intelligent scissors, the outputs of
the 2D intelligent scissors provide inputs for a 3D intelligent
scissors. Alternately, any other 2D segmentation algorithm
could also be used to produce the inputs to the minimum-
weight surface problem.

We may summarize the entire segmentation algorithm
as follows:

1. Obtain an oriented closed contour on one or more
slices through an outside algorithm (e.g., 2D

intelligent scissors). This contour is represented in
(7) by vector r.

2. Define facet weights from the image content using
(1). Note that “outside” facets must be assigned to an
arbitrary value—we have employed w = 0.5.

3. Identify any surface z, that has the desired boundary
(see Section 2.4).

4. Find the minimum-cost circulation through z
(corresponding to solving (16)), which may be
solved using a variety of existing algorithms [20].

5. The set of saturated edges in the primal graph
(corresponding to facets in the dual) comprises the
minimum-weight surface having the boundary
given by the closed contours obtained in Step 1.

3 RESULTS

In the previous sections, we presented the generalization of
the (2D) shortest path problem with Type II constraints to
the analogous (3D) minimum-weight surface problem with
Type II constraints. Consequently, a natural extension of
intelligent scissors to 3D has been provided. In this section,
our goal is to verify the correctness of the algorithm on
synthetic data, and then, to demonstrate its application to
the segmentation of 3D data.

3.1 Correctness

We begin with three examples to demonstrate correctness.
First, we use the algorithm to segment a black sphere (in a
white background), given an initial contour around one
parallel. Second, we segment the same sphere using an
input consisting of contours around two parallels (i.e., a
contour given on two slices). Finally, we segment a
“lunchbox” shape given a medial contour. This experiment
shows that the algorithm correctly handles changes in object
genus without the special handling employed by the path-
based methods reviewed above.

Fig. 5 shows the results of these three experiments,
verifying the correctness of the algorithm. In contrast to the
shortest path problem in which two points are necessary to
define a path, Fig. 5a shows that a single closed contour is
sufficient to define the boundary of a surface.

As a reference implementation, we employed both a
generic LP solver (implemented in the COIN library [19]) to
solve the LP problem defined by (7) and the fast MCNF
solver from Sullivan’s method. From a speed standpoint,
applying the generic LP solver to solving the minimum-
weight surface problem on a 64 x 64 x 64 lattice represent-
ing Fig. 5a required 819 seconds when run on an IBM
ThinkPad T42 laptop with a 1.70 GHz processor and
512 MB of RAM. The same solution required 0.55 seconds
to obtain with the MCNF solver on the same machine. The
LP solver implemented in the COIN library was general
purpose and did not take advantage of the significant
structure inherent in the facet-edge incidence matrix of a
lattice. However, the discrepancy in speed between the
generic LP solver and the MCNF solver is so great that one
must assume that the MCNF solver would outperform even
dedicated LP code for (7).

Another similarity with the shortest path problem is that
the minimum-weight surface may not be unique. For

GRADY: MINIMAL SURFACES EXTEND SHORTEST PATH SEGMENTATION METHODS TO 3D 9

=

(a)

(b)

()

(d)

(e) (f)

Fig. 5. Synthetic examples to illustrate correctness. Renderings of the original object (with the input contours) are shown, along with the algorithm
outputs. The input volumes all had black voxels indicating voxels belonging to the object and white voxels indicating background. The white stripe in
each of the rendered views shows the input contour(s). In the solution visualizations, black dots are plotted at the center of the black (object) voxels
and facets are shown to indicate the computed surface. (a) and (b) A sphere with an input contour along a parallel. Note that, unlike 2D intelligent
scissors, a single boundary input (contour) is sufficient to define a solution. (c) and (d) A sphere with input contours at two parallels of different
heights. (e) and (f) A lunchbox shape with a handle on the top and a medial contour input. The algorithm will correctly find minimum-weight surfaces

with topological changes.

example, a closed contour located precisely at the equator of
the sphere in Fig. 5a could result in a solution indicating
either the upper or the lower hemisphere. This situation
would be analogous in the shortest path problem to the
multiple solutions possible when given the input of two
opposite points on a circle. Fig. 6 illustrates this issue.

We stress that by using a combinatorial formulation of
the minimal surface problem on a 6-connected 3D lattice,
the continuous, euclidean minimal surface will not neces-
sarily be obtained. Accordingly, the continuous euclidean
minimal surface and the minimum-weight surface may not
agree. For example, the solution to the continuous minimal
surface is a catenoid when given a boundary of two,
identical, closed contours at different heights. In contrast,
the minimum-weight surface is a cylinder when the under-
lying complex is a 6-connected graph. This contrast between
the discrete and continuous domains is analogous to the fact
that the shortest path on a four-connected lattice will not
necessarily be the same as a straight line in the plane.

3.2 Real Data

In this section, we illustrate the application of minimum-
weight surfaces to the segmentation of real data. Minimum-
weight surfaces with Type I boundary conditions have
previously been applied to image segmentation in the

(@) (b)

context of graph cuts [9]. Therefore, we simply illustrate the
use of minimum-weight surfaces with Type II boundary
conditions in the context of image segmentation (i.e., as a
3D extension of intelligent scissors). Two of the 3D data sets
used in these experiments were SPECT cardiac data and CT
cardiac data. A third example is given by a CT scan
showing the branching of the aorta near the iliac bifurca-
tion. These data are used to illustrate that the algorithm
described here has no difficulty joining more than two
closed contours, even when the underlying object splits into
multiple sections. Note that the resulting surface, like a pair
of pants, satisfies the desired constraints—the only surface
boundaries are at the locations specified by closed contours.
Type II boundary conditions (closed contours) were
generated using conventional intelligent scissors on two
slices of each data set, and we computed the minimum-
weight surface that had these contours as a boundary. Fig. 7
shows the result of these experiments.

4 CONCLUSION

Previous attempts to extend shortest path segmentation
algorithms to 3D have all focused on using a network of
paths drawn between closed contours (or contours and
points) to produce the surface of a 3D object. However,

(© (d

Fig. 6. The minimum-weight surface given a boundary is not necessarily unique. For example, if the surface boundary is given as a closed contour at
the equator of a sphere, then either (a) the upper or (b) the lower hemisphere is a valid minimum solution. This same lack of uniqueness may also
appear in the shortest path problem. Analogously, if two endpoints were placed at antipodal points of a circle, the shortest path may be returned as

either the left (c) or right (d) path around the circumference of the circle.

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. XX,

XXXXXXX 2010

Fig. 7. Application of the algorithm to segmentation of 3D medical data. In each study, the green/gray contours were placed on the left and right
slices and the intermediate yellow/white contours represent the minimum-weight surface between these contours. This figure demonstrates that the
algorithm behaves as expected for a minimal surface approach to 3D image segmentation. (a) SPECT cardiac data. (b) CT cardiac data. (c) CT
aorta near iliac branch—notice that multiple closed contours may be placed and a single surface may be found that splits accordingly to
accommodate the prescribed boundaries. Note that all slices between the closed contours are not displayed.

shortest paths joining two closed contours are not guaran-
teed to lie on the minimal surface joining the two contours,
implying that no density of shortest paths will ever be
guaranteed to produce the minimal surface. In this work,
we demonstrated that the natural extension of shortest path
techniques to 3D segmentation is to directly solve for the
minimal surface. By directly solving for the minimal
surface, we make no assumptions on object genus, permit
the use of a single closed contour, split and merge the
surface as needed, may employ arbitrary (nonnegative)
weighting functions, and are guaranteed to find the exact
minimum surface. Using Sullivan’s method, the reduction
of the minimal surface problem to an MCNF problem
permits a very efficient solution.

In contrast to the max-flow/min-cut approach to finding
minimum-weight surfaces by defining Type I boundary
conditions, we detail how to find minimum-weight surfaces
through the specification of Type II boundary conditions.
Both Type I and Type II boundary conditions find
continuing application in 2D for the computation of shortest
paths. We hope that this presentation of how intelligent
scissors/live wire can be extended to higher dimension will
permit the popularization of this ubiquitous segmentation
method in a 3D context.

APPENDIX A

FEASIBILITY OF A SOLUTION TO THE
MINIMUM-WEIGHT SURFACE PROBLEM

In this appendix, we address the question: Will any r
representing a closed contour have a solution in (7)? The
answer turns out to depend on the underlying complex—
some complexes will always have a solution, while others
may not. Fortunately, for use in computer vision, all
complexes likely to be of interest (e.g., the 6-connected
lattice) will always have a feasible solution. Note that the

dependence of feasibility on the underlying complex is
analogous to the shortest path case (3), in which there will be
no feasible solutions if the underlying graph is disconnected
and the path endpoints are placed in different components.
We begin by formally stating that the boundary of a
boundary is zero in terms of the incidence matrices:

AB = 0. (17)

Since r is the signed indicator vector of a closed contour, we
note that

Ar=0. (18)

We can now make the following statement regarding the
feasibility of finding a solution to (7) given a closed contour,
represented by an r that satisfies (18).

Proposition 1. If the edge-facet incidence matrix has m —n + 1
independent columns and a nonzero vector r satisfies (18),
then (7) is guaranteed to have a solution.

Proof. The node-edge incidence matrix is known to have a
right null-space of rank m —n + 1 [30]. Since (17) holds
and the edge-facet incidence matrix has m —n+1
independent columns, then the edge-facet incidence
matrix spans the right null-space. In other words, if

Ar =0, (19)

then r may be expressed as a linear combination (with
constants c) of the columns of the edge-facet incidence
matrix

r = Be, (20)

giving the proposition. ad
In a more general context, the question of feasibility

hinges on whether or not the contour represented by r
encloses a “hole” in the complex. For example, if the

GRADY: MINIMAL SURFACES EXTEND SHORTEST PATH SEGMENTATION METHODS TO 3D 11

underlying complex were the triangulated surface of a
torus, then an r representing a contour encircling the handle
would not have a feasible solution. This situation is
analogous to the minimal path problem in which it will
not be possible to find a minimal path joining two points
placed in separate components of a disconnected graph. In
the context of image processing on a 6-connected lattice, the
homology group is trivial (i.e., any r may be expressed as a
linear combination of B), and therefore, any r representing a
closed contour will have a feasible solution z.

APPENDIX B

SOLUTION VIA LINEAR PROGRAMMING—THE
GENERAL CASE

In this section, we are concerned with knowing when the
integer programming problem defined by (7) may be solved
using a generic linear programming solver. It was shown by
Sullivan [47] that linear programming could be used to
solve (7) if the underlying complex is cellular and there
exists a feasible solution. We now proceed to discuss a
characterization of when the minimal surface integer
programming problem defined by (7) can be solved with
generic LP when the underlying complex is not cellular.

If the constraint of an integer programming problem (i.e.,
(7)) is given as an inequality, then the total unimodularity (t.u.)
property is both necessary and sufficient to guarantee that a
solution obtained via linear programming is integer for an
arbitrary feasible integer right-hand side [37]. In contrast, if
the constraintis formulated as an equality (as in our case), then
a t.u. constraint matrix is simply sufficient, but not necessary.
Ithas long been known that edge-facet incidence matrices are
not, in general, totally unimodular [43], [36]. Recall that a
matrix is totally unimodular when the determinant of all
submatrices takes one of the values {—1,0, 1}.

In the conference publication on this topic [21], the
question of total unimodularity of the constraint matrix was
not properly handled. The issues are: 1) Total unimodular-
ity of the constraint matrix is mischaracterized as both
sufficient and necessary for an equality constraint to
guarantee an integral solution. In fact, total unimodularity
is simply sufficient, but not necessary to guarantee an
integral solution in the presence of a constraint of this form
[35]. 2) The proofs of total unimodularity for the lattice do
not prove this property since they are predicated on the
(false) premise that total unimodularity is preserved via
elementary matrix operations. The elementary matrix
operations preserve unimodularity, but not total unimodu-
larity. However, the two operations introduced do preserve
orientability (since the torsion coefficients, as defined in
[30], [52], are preserved under these operations) and
therefore show that the lattice is orientable. Therefore, the
connection between orientability and total unimodularity is
that a tu. incidence matrix necessarily represents an
orientable complex (since the invariant factors for a t.u.
matrix are all unit valued), but the converse statement is not
necessarily true. 3) The edge-facet incidence matrix of the
lattice is not, in general, totally unimodular. However,
despite the aforementioned troubles with this topic in [21],
the primary conclusion remains correct, for reasons that

will be explained in this section. Namely, on the lattice,
solving (7) is guaranteed to produce an integer solution
when using generic linear programming.

Truemper [50] settled the issue of when an equality
constraint in the same form as (7) was both necessary and
sufficient to guarantee that a solution is integer in the
presence of an integral right-hand side by introducing the
concept of unimodular (u.) matrices. However, in Section 2.3,
it was shown that one can employ the additional information
that an integer solution exists (i.e., (8)). This additional
information provides extra power in analyzing when an
equality constraint in the same form as (7) will be guaranteed
to give an integer solution. We develop this idea further by
introducing the notion of a preunimodular matrix
(p-u. matrix).

Let us call matrix A preunimodular if

min wa7
xr
s.t. Ax = Axy, (21)
x>0
has integer solution x for all integer ;. Note that A, B, and
C in this appendix are not intended to correspond to the

incidence matrices used in the body of this paper.
Let A be of size m x n,rank(A) = r.

Theorem 1. The following conditions are equivalent:

1. A is preunimodular.
2. For all bases B with A = [BC), matrix D = {B~'}C

is integer.

3. For all bases B with A = [BC|, matrix D = {B}C
is t.u.

4. For at least one base B with A = [BC|, matrix D =
{B~1}C is t.u.

5. There exists t.u. matrix U such that KerA = Im U.

6. A can be converted to a t.u. matrix by elementary
row operations (namely, adding a (possibly frac-
tional) multiple of one row to another, adding/
removing zero row).

Let B be some base, with A = [BC]. In the following, write
x = [y; 2|, where y is a vector of size r corresponding to
columns of B and z is a vector of size (n — r) corresponding
to columns of C. Although B is not generally square, we
write D = { B~1}C to indicate the space spanned by D in the
expression BD = C. Note that C'is m x (n —r), Bis m x r,
and Dis r x (n—r).
Equation Az = Az is equivalent to

By + BDz = By, + BDz (22)
or
y+ Dz =yo+ Dz. (23)
Thus, the LP problem can be rewritten as
minw’z = w’ [y; 2],
xr
y+ Dz =yo + Dz, (24)
y=0,
z>0.

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. XX, XXXXXXX 2010

Proof. 1 < 2: For a fixed xy = [yo; 20], all extreme solutions
of the LP are given by {y=yo+ Dz,z=0} for all
possible choices of base B. Thus, 1) is equivalent to the
statement: yy + Dz, is integer for all bases and for all
integer vectors [yo; 2], or Dz is integer for all bases and
for all integer vectors z). The latter is easily shown to be
equivalent to 2.

1 < 4: Let B be an arbitrary base of A. If either 1 or 4
holds, then the matrix D is integer (as shown above).
Therefore, we may assume that D is integer. Denote
D =[I Dl

Condition 1 takes the form of (24), which is equivalent
to the statement that

minw’z = w! [y; 2],
D'ly;2] = b,
y =0,
z>0

(25)

has integer solution [y;z] for all integer b, which is
equivalent to stating that D is t.u.

Note that in the sequence above, B was taken to be an
arbitrary base of A. This fact shows that 1 = 3.

5 & 1:In the same manner as (12), we may transform
(21) to the form

minw’ (Ug + o),
! (26)
st.—Uq=29p —x < x,

which may take integer values iff U is t.u. [35].

4 & 5. Ar =0 is equivalent to By+ BDz=0, or
y+ Dz =0. Thus, KerA is spanned by vectors [—De;; e;],
where ¢; (i =1,...,n —1) is the ith unit vector. There-
fore, KerA = Im U, where U is the n x (n — r) matrix of
these vectors (i.e., the ith column of U equals [—De;; ¢;]).
U can be written as [—D;], and thus, is t.u.

1 & 6: Without loss of generality, we can assume that
A has the form [I D] (since any matrix can be converted
to such a form by elementary row operations and
swapping columns, and such operations preserve the
p-u. property). Using the fact that 1 = 4, we obtain that A
ispu. =Distu =Ais tu]

Theorem 2. Suppose A, U are matrices such that KerA = Im U.
Then, A is p.u. if and only if UT is p.u.

Proof. If: Suppose A is p.u. Then, by 5, there exists t.u.
matrix U such that KerA = ImU. Therefore, ImU = ImU
implies that the row space of U” and U” is the same,
which implies that U’ can be converted to U” by
elementary row operations, finally, implying that U7 is
p-u. (by 6).

Only if: Suppose U” is p.u. Then, by 6, U" can be
converted to a t.u. matrix AUT using elementary row
operations. There holds ImU = ImU = KerA. Therefore,
by 5, matrix A is p.u. O

Additional properties of a p.u. matrix derived from the
above are:

1. Any matrix with full column rank (i.e., » = n) is p.u.

2. If Ais p.u., then [A A] is p.u.

3. If Aisp.u, then [A; I]is p.u., since [4; I] has full rank.

4. If Ais p.u., the removal of any row j produces a new
matrix A, that is, p.u., since KerA4; = KerA.

Lemma 1. If A is p.u. and the rank of A is preserved by removing
columns or adding rows to form A*, then A* is p.u.

Proof. Part 1: If A is p.u. and the removal of column 3

preserves therank, then A; (the matrix A without column)

is pu. A= [BC], D={B'}C is t.u. Since removal of a;

preserves rank, a basis is preserved such that A; = [B C}]

and D; = {B7'}C; is tu. if D is t.u., since removal of any
row /column preserves the t.u. property.

Part 2: If A is p.u. and rows are added that preserve

the rank, then the new rows B =uv"A for some v.

KerA = Ker[4; B. O

In the context of the above discussion, the facet-edge
incidence matrix of the 6-connected lattice is p.u. (by
condition 5 of Theorem 1), and therefore, (by definition) the
integer programming problem described by (7) is guaran-
teed to produce an integer solution when linear program-
ming is applied.

The characterization of p.u. matrices given above
demonstrates that it is sometimes possible to use linear
programming to solve for minimum-weight surfaces on
more general (noncellular) complexes for which it would
not be possible to employ Sullivan’s method.

Finally, we note that p.uness is a property of the
constraint matrix, defined in the minimum-weight surface
problem by the facet-edge incidence matrix. Therefore, it is
the structure of the complex itself that determines whether
or not the minimum-weight surface problem is solvable
with LP, rather than the weights associated with the facets
(provided that the weights are nonnegative). This point is
important in the context of 3D image processing—regard-
less of the image content (leading to weights), the
minimum-weight surface problem can always be solved
with LP on the 6-connected lattice.

ACKNOWLEDGMENTS

The author would like to thank Marie-Pierre Jolly for first
proposing work on a proper extension of Intelligent Scissors
to 3D and Christopher Alvino for the suggestion of the
catenoid as a counterexample to the minimal paths
approach to constructing a surface. He would especially
like to thank Vladimir Kolmogorov for alerting him to the
problem with the conference version of this work and for all
of his assistance with Section 2.3 and Appendix B. Useful
insights on this topic were also provided by Yuri Boykov
and Ali Kemal Sinop. Finally, he would like to thank the
reviewers and editor for their detailed suggestions which
significantly improved the exposition.

REFERENCES

[1] K. Aoshima and M. Iri, “Comments on F. Hadlock’s Paper:
Finding a Maximum Cut of a Planar Graph in Polynomial Time,”
SIAM]. Computing, vol. 6, pp. 86-87, 1977.

GRADY: MINIMAL SURFACES EXTEND SHORTEST PATH SEGMENTATION METHODS TO 3D 13

(2]

B3]

(4]

(5]

(o]

(71

8]

]

[10]

(1]

(12]

[13]

[14]

[15]

[1o]

(17]

(18]
(191

[20]

(21]

(22]

(23]

[24]

(23]

[20]

B. Appleton and H. Talbot, “Globally Optimal Surfaces by
Continuous Maximal Flows,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 28, no. 1, pp. 106-118, Jan. 2006.

R. Ardon and L.D. Cohen, “Fast Constrained Surface Extraction
by Minimal Paths,” Int’l |. Computer Vision, vol. 69, no. 1, pp. 127-
136, Aug. 2006.

R. Ardon, L.D. Cohen, and A. Yezzi, “A New Implicit Method for
Surface Segmentation by Minimal Paths: Applications in 3D
Medical Images,” Proc. Int’l Workshop Energy Minimization Methods
in Computer Vision and Pattern Recognition, A. Rangarajan, ed.,
pp- 520-535, 2005.

C.J. Armstrong, W.A. Barrett, and B. Price, “Live Surface,” Proc.
Volume Graphics "06, vol. 22, pp. 661-670, Sept. 2006.

N. Biggs, Algebraic Graph Theory. Cambridge Univ. Press, 1974.

I. Bitter, A.E. Kaufman, and M. Sato, “Penalized-Distance
Volumetric Skeleton Algorithm,” IEEE Trans. Visualization and
Computer Graphics, vol. 7, no. 3, pp. 195-206, July-Sept. 2001.

M.J. Black, G. Sapiro, D.H. Marimont, and D. Heeger, “Robust
Anisotropic Diffusion,” IEEE Trans. Image Processing, vol. 7, no. 3,
pp. 421-432, Mar. 1998.

Y. Boykov and M.-P. Jolly, “Interactive Graph Cuts for Optimal
Boundary & Region Segmentation of Objects in N-D Images,”
Proc. Int’l Conf. Computer Vision, pp. 105-112, 2001.

Y. Boykov and V. Kolmogorov, “Computing Geodesics and
Minimal Surfaces via Graph Cuts,” Proc. Int’'l Conf. Computer
Vision, vol. 1, Oct. 2003.

AJ. Briggs, C. Detweiler, D. Scharstein, M. College, and A.
Vandenberg-Rodes, “Expected Shortest Paths for Landmark-
Based Robot Navigation,” Int’l]. Robotics Research, vol. 23,
nos. 7/8, pp. 717-728, 2004.

C. Buehler, S.J. Gortler, M.F. Cohen, and L. McMillan, “Minimal
Surfaces for Stereo,” Proc. Seventh European Conf. Computer Vision,
vol. ITI, pp. 885-899, May 2002.

L. Cohen and T. Deschamps, “Grouping Connected Components
Using Minimal Path Techniques. Application to Reconstruction of
Vessels in 2D and 3D Images,” Proc. IEEE CS Conf. Computer Vision
and Pattern Recognition, vol. 2, pp 102-109, 2001.

L.D. Cohen and R. Kimmel, “Global Minimum for Active Contour
Models: A Minimal Path Approach,” Int’l]. Computer Vision,
vol. 24, no. 1, pp. 57-78, 1997.

A X. Falcdo and J.K. Udupa, “A 3D Generalization of User-Steered
Live-Wire Segmentation,” Medical Image Analysis, vol. 4, pp. 389-
402, 2000.

AX. Falcdo, J.K. Udupa, S. Samarasekera, S. Sharma, B.H. Elliot,
and R. de A. Lotufo, “User-Steered Image Segmentation Para-
digms: Live Wire and Live Lane,” Graphical Models and Image
Processing, vol. 60, no. 4, pp. 233-260, 1998.

L.R. Ford and D.R. Fulkerson, “A Primal-Dual Algorithm for the
Capacitated Hitchcock Problem,” Naval Research Logistics Quar-
terly, vol. 4, pp. 47-54, 1957.

L.R. Ford and D.R. Fulkerson, Flows in Networks. Princeton Univ.
Press, 1962.

J. Forrest, D. de la Nuez, and R. Lougee-Heimer, CLP User Guide.
IBM Research, 2004.

A.V. Goldberg, E. Tardos, and RE. Tarjan, “Network Flow
Algorithms,” Paths, Flows and VLSI-Design, B. Korte, L. Lovasz,
H. Proemel, and A. Schrijver, eds., pp. 101-164, Springer-Verlag,
1990.

L. Grady, “Computing Exact Discrete Minimal Surfaces: Extend-
ing and Solving the Shortest Path Problem in 3D with Application
to Segmentation,” Proc. IEEE CS Conf. Computer Vision and Pattern
Recognition, vol. 1, pp. 69-78, June 2006.

F. Hadlock, “Finding a Maximum Cut of a Planar Graph in
Polynomial Time,” SIAM]. Computing, vol. 4, no. 3, pp. 221-225,
1975.

G. Hamarneh, J. Yang, C. McIntosh, and M. Langille, “3D Live-
Wire-Based Semi-Automatic Segmentation of Medical Images,”
Proc. SPIE Medical Imaging '05: Image Processing, pp. 1597-1603,
2005.

P.J. Hilton and S. Wylie, Homology Theory. Cambridge Univ. Press,
1960.

D. Kirsanov, “Minimal Discrete Curves and Surfaces,” PhD thesis,
Harvard Univ., 2004.

M. Knapp, A. Kanitsar, and M.E. Groller, “Semi-Automatic
Topology Independent Contour-Based 2;D Segmentation Using
Live-Wire,”]. WSCG, vol. 12, no. 2, pp. 229-236, 2004.

(27]

[28]

[29]

(30]

(31]

(32]

(33]

[34]

(33]
(36]
(371

(38]

(39]

(40]

[41]

[42]

[43]

(44]

(45]

40]

[47]

(48]

(49]

[50]

[51]

[52]

V. Kolmogorov, “Primal-Dual Algorithm for Convex Markov
Random Fields,” Technical Report MSR-TR-2005-117, Microsoft,
Sept. 2005.

V. Kolmogorov and C. Rother, “Minimizing Nonsubmodular
Functions with Graph Cuts—A Review,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 29, no. 7, pp. 1274-1279, July
2007.

S. Kénig and J. Hesser, “3D Live-Wires on Pre-Segmented Volume
Data,” Proc. SPIE Medical Imaging '05: Image Processing, pp. 1674-
1679, 2005.

S. Lefschetz, Algebraic Topology, vol. 27. Am. Math. Soc.
Colloquium Publications, 1942.

K. Li, X. Wu, D.Z. Chen, and M. Sonka, “Optimal Surface
Segmentation in Volumetric Images—A Graph-Theoretic Ap-
proach,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 28, no. 1, pp. 119-134, Jan. 2006.

C. Mattiussi, “The Finite Volume, Finite Element and Finite
Difference Methods as Numerical Methods for Physical Field
Problems,” Advances in Imaging and Electron Physics, pp. 1-146,
Academic Press, Inc., Apr. 2000.

F. Morgan, Geometric Measure Theory, third ed. Academic Press,
2000.

E. Mortensen and W. Barrett, “Interactive Segmentation with
Intelligent Scissors,” Graphical Models in Image Processing, vol. 60,
no. 5, pp. 349-384, 1998.

G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial
Optimization. John Wiley & Sons, 1999.

S. Okada, “On Mesh and Node Determinants,” Proc. IRE, vol. 43,
p- 1527, 1955.

C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization.
Dover, 1998.

S.V. Porter, M. Mirmehdi, and B.T. Thomas, “A Shortest Path
Representation for Video Summarisation,” Proc. 12th Int’l Conf.
Image Analysis and Processing, pp. 460-465, Sept. 2003.

S. Roy and L. Cox, “A Maximum-Flow Formulation of the n-
Camera Stereo Correspondence Problem,” Proc. Int’l Conf.
Computer Vision, pp. 492-499, 1998.

Z. Salah and].O.D. Bartz, “Live-Wire Revisited,” Proc. Workshop
Bildverarbeitung in der Medizin, pp. 158-162, 2005.

A. Schenk, G. Prause, and H.-O. Peitgen, “Efficient Semiauto-
matic Segmentation of 3D Objects in Medical Images,” Proc. Int'l
Conf. Medical Image Computing and Computer-Assisted Intervention,
pp- 186-195, 2000.

A. Schenk, G. Prause, and H.-O. Peitgen, “Local Cost Computa-
tion for Efficient Segmentation of 3D Objects with Live Wire,”
Proc. SPIE Medical Imaging, M. Sonka and K.M. Hanson, eds.,
pp. 1357-1364, 2001.

S. Seshu, “The Mesh Counterpart of Shekel’s Theorem,” Proc. IRE,
vol. 43, p. 342, 1955.

J.A. Sethian, “A Fast Marching Level Set Method for Mono-
tonically Advancing Fronts,” Proc. Nat'l Academy of Sciences USA,
vol. 93, no. 4, pp. 1591-1595, 1996.

J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp- 888-905, Aug. 2000.

W.-K. Shih, S. Wu, and Y.S. Kuo, “Unifying Maximum Cut and
Minimum Cut of a Planar Graph,” IEEE Trans. Computers, vol. 39,
no. 5, pp. 694-697, May 1990.

J.M. Sullivan, “A Crystalline Approximation Theorem for Hyper-
surfaces,” PhD thesis, Princeton Univ., Oct. 1990.

C. Sun, “Fast Optical Flow Using 3D Shortest Path Techniques,”
Image and Vision Computing, vol. 20, nos. 13/14, pp. 981-991, Dec.
2002.

E. Tonti, “On the Geometrical Structure of Electromagnetism,”
Gravitation, Electromagnetism and Geometrical Structures,
G. Ferraese, ed., pp. 281-308, Pitagora, 1996.

K. Truemper, “Algebraic Characterizations of Unimodular Ma-
trices,” SIAM]. Applied Math., vol. 35, no. 2, pp. 328-332, Sept.
1978.

J.N. Tsitsiklis, “Efficient Algorithms for Globally Optimal Trajec-
tories,” IEEE Trans. Automatic Control, vol. 40, no. 9, pp. 1528-1538,
Sept. 1995.

A.]. Zomorodian, Topology for Computing. Cambridge Univ. Press,
2005.

14 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. XX, XXXXXXX 2010

Leo Grady received the BSc degree in electrical
engineering from the University of Vermont in
1999 and the PhD degree from the Cognitive and
Neural Systems Department at Boston Univer-
sity, in 2003. Since Autumn 2003, he has been
working as a senior research scientist at Siemens
Corporate Research, Princeton, New Jersey, in
the Imaging and Visualization Department. His
research focuses on image segmentation, data

- clustering, learning and filtering using techniques
from graph theory, combinatorial topology, and PDEs. Other interests
include pattern/object recognition, applied mathematics, nonuniform data
processing, image registration, cellular automata, machine learning,
robotics, and emergent phenomena. He is a member of the IEEE and the
IEEE Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

