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Abstract—The Mumford-Shah functional has had a major
impact on a variety of image analysis problems including image
segmentation and filtering and, despite being introduced over
two decades ago, it is still in widespread use. Present day
optimization of the Mumford-Shah functional is predominated
by active contour methods. Until recently, these formulations
necessitated optimization of the contour by evolving via gradient
descent, which is known for its overdependence on initialization
and the tendency to produce undesirable local minima. In order
to reduce these problems, we reformulate the corresponding
Mumford-Shah functional on an arbitrary graph and apply the
techniques of combinatorial optimization to produce a fast, low-
energy solution. In contrast to traditional optimization methods,
use of these combinatorial techniques necessitates consideration
of the reconstructed image outside of its usual boundary, requir-
ing additionally the inclusion of regularization for generating
these values. The energy of the solution provided by this
graph formulation is compared with the energy of the solution
computed via traditional gradient descent-based narrow-band
level set methods. This comparison demonstrates that our graph
formulation and optimization produces lower energy solutions
than the traditional gradient descent based contour evolution
methods in significantly less time. Finally, we demonstrate the
usefulness of the graph formulation to apply the Mumford-
Shah functional to new applications such as point clustering and
filtering of non-uniformly sampled images.

Index Terms—Level sets, active contours, piecewise smooth
Mumford-Shah, combinatorial optimization, graph reformulation

I. I NTRODUCTION

T HE Mumford-Shah functional was devised to formulate
the problem of finding piecewise smooth reconstructions

of functions (e.g., images) as an optimization problem [43].
Optimizing the Mumford-Shah functional involves determin-
ing both a function and a contour across which smoothness
is not penalized. Unfortunately, since smoothness of the re-
construction is not enforced across the contour and since the
contour is variable in the optimization, the functional is not
easily minimized using classical calculus of variations.

Given a fixed contour it is possible to solve for the opti-
mal reconstruction function by solving an elliptic PDE with
Neumann boundary conditions. Additionally, given a fixed
piecewise smooth reconstruction function, it is possible to
determine at each point on the contour, the direction and
speed that the contour should move to decrease the functional
as quickly as possible. Thus, most methods for solving the
Mumford-Shah functional involve alternating optimization of
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the reconstruction function and the contour [19], [20], [55],
[14]. The results of performing this style of optimization are
well known and achieve satisfactory results that are usable
for different imaging applications [55]. Unfortunately, this
optimization of the Mumford-Shah functional using contour
evolution techniques (typically implemented with gradient
descent on level sets) is slow primarily due to the small steps
that the contour must take at each iteration. This slowness
is exacerbated by the fact that a very small perturbation
of the contour can have a relatively large effect on the
optimal reconstruction function. Additionally, these traditional
methods often require many implementation choices (e.g.,
implementation parameters) and the result of these choices
may cause differences in the final result.

Although new functionals for segmentation/filtering con-
tinue to be developed, the Mumford-Shah functional is still
very widely used and optimized with level set methods (see
[26], [35], [22], [59], [46], [25] for a variety of recent applica-
tions). In addition to applications, recent work in the computer
vision community has also continued to address theoretical
aspects of the Mumford-Shah functional and its optimization.
Brox et al. have recently shown the Mumford-Shah functional
to be interpretable as a first order approximation of ana
posteriori maximization [14]. Efficient level set segmentations
based on the Mumford-Shah functional have been presented by
Piovanoet al. in [45], who show that the global statistics can
be approximated with Gaussian weighted local statistics. These
methods perform their minimization with level sets based on
the standard gradient descent approach. Also recent methods
have appeared that present piecewise smooth segmentations
without use of gradient descent. Bressonet al. has shown,
based on the works of Chanet al. and Chambolle, that the
fast global minimization of the boundary (with functions held
fixed) in a modified Mumford-Shah functional is achievable
without use of explicit curve evolution by taking advantage
of a dual formulation of the TV-norm [13], [21], [18]. An
et al. achieve state-of-the-art piecewise smooth segmentation
without the explicit use of contour evolution by performing
gradient descent minimization of phase fields [2]. Hintermüller
et al. has reported inexact Newton-style optimization on the
contour for the Mumford-Shah functional using conjugate
gradients [36].

Practical energy minimization problems formulated on a
finite series of variables can often be solved efficiently using
combinatorial (graph-based) algorithms [34], [38], [53], [50].
Furthermore, because of the well established equivalence
between the standard operators of multidimensional calculus
and certain combinatorial operators, it is possible to rewrite
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many PDEs formulated inRN equivalently on a cell complex
(graph). By reformulating the conventional, continuous, PDE
on a graph it becomes straightforward to apply the arsenal
of combinatorial optimization techniques to efficiently solve
these variational problems. In this work, we reformulate the
Mumford-Shah functional on a graph in order to reap the
benefits of combinatorial optimization to reduce the difficulties
of speed and local minima associated with the small contour
improvements obtained via traditional contour evolution.

An additional benefit of reformulating an energy in a dis-
crete, combinatorial setting is that such a generic formulation
may be applied without modification to general data analysis
problems, such as point clustering [23], mesh smoothing
(segmentation) [54] or space-variant vision [47]. Even in the
context of Cartesian image processing, recent work has exam-
ined modified neighborhood structures to generate improved
segmentation results [39], [33]. Our combinatorial formulation
allows for a straightforward application of the Mumford-Shah
optimization in these scenarios. For example, the popular NL-
Means algorithm of [16] may simply be interpreted as the
addition of non-local neighborhoods (graph edges) to the graph
with specific edge weights [28]. This perspective on the NL-
Means algorithm allows us to directly apply our combinatorial
Mumford-Shah algorithm to the graph defined by the extra
edges generated by NL-Means. In this manner, the graph
construction and energy optimization may be separated and
addressed independently. In SectionIV-B we demonstrate the
use of the graph formulation to perform point clustering andto
filter images defined on a space-variant data structure modeled
after a biological sampling of image space.

Graph based optimization techniques have been previously
used as components in optimization methods for functionals
formulated in continuous space. Boykov and Cremers suggest
using a max-flow/min-cut step to assist in level set updates
[10]. Zeng et al. [60] and El-Zehiry et al. [27] employ a
max-flow/min-cut operation as a component of their piecewise
constant Mumford-Shah computations; we instead present a
complete combinatorial reformulation and solution of the
more general piecewise smooth Mumford-Shah functional.
Likewise, graph methods have also been employed in the
minimization of total variation for image filtering tasks [24],
[6].

Traditional contour evolution optimizations pursue a con-
tour update in the direction of steepest descent. Since this
contour update represents a first variation of the Mumford-
Shah functional, the calculation of this update does not require
knowledge of the values of the idealized foreground and
background functions (images) at locations distant from the
contour. In contrast, the graph formulation that we pursue leads
us to a combinatorial optimization approach that is capableof
taking arbitrarily large steps of the contour location. In order
to take these large steps, it is necessary for us to address the
estimation of the foreground/background function values at
locations (pixels) distant from the contour. The necessityfor
extending the foreground and background functions outsideof
their regions of evaluation, in the context of a global boundary
optimization, have been noted in the literature [56], [13], [61],
[15]. Our method of performing this extension is detailed in

SectionII-C.
Graph formulations of the Mumford-Shah have previously

appeared in the literature, but these variants employ inefficient
optimization techniques and do not necessarily generalize
to arbitrary graphs. Yuet al. formulated the Mumford-Shah
energy on a lattice and used a greedy algorithm for per-
forming the boundary update. Similarly, the MRF formulation
of Geman and Geman [29] (and later addressed explicitly
by Mumford [42]) is commonly viewed as equivalent to a
discrete formulation of the Mumford-Shah functional in light
of its convergence in the limit to the continuous Mumford-
Shah model [17]. Our contributions in this paper are to:
1) Appeal to the well-established combinatorial analogues
of differential operators to formulate our discrete version of
the Mumford-Shah, yielding a different discrete instantiation
of the Mumford-Shah functional than what has previously
appeared in the literature (particularly the smoothness term),
2) Show that this discrete version of the Mumford-Shah
can be optimized efficiently using combinatorial optimization
tools only if values of the reconstructed foreground intensities
are extended beyond the foreground region, 3) Propose a
method for extending these intensity values to the entire
graph (domain), 4) Show that the resulting algorithm strongly
outperforms existing gradient descent-based level set opti-
mizations of the Mumford-Shah functional, 5) Show how to
apply the combinatorial formulation of the Mumford-Shah
functional to nontraditional problems such as point clustering
and nonuniform image processing.

In this work, we begin in SectionII by reformulating
the Mumford-Shah functional on a graph and then showing
how to perform the optimization using known combinatorial
methods. In SectionIII we perform several experiments to
compare the combinatorial optimization associated with our
graph formulation to the traditional gradient descent-based
level set implementation. Our experiments focus on the relative
speed of the two methods, as well as the convergence rate,
robustness to initialization, robustness to parameter settings
and the production of a lower-energy solution. In Section
IV-A we show that the contour evolution produced via our
combinatorial method is capable of non-local movement by
taking arbitrarily large steps between iterations. Section IV-B
shows how to use our general formulation of the Mumford-
Shah functional to analyze data on a non-lattice graph. Finally,
in SectionV, we draw conclusions about the results of these
experiments and suggest directions for future work.

II. M ETHOD

In this section, we first define the continuous piecewise
smooth Mumford-Shah model that we use. After this defi-
nition, we consider each of the three terms and formulate the
combinatorial analogue of the piecewise smooth Mumford-
Shah functional. With these combinatorial analogues, we pro-
ceed to show how to perform an optimization of the variables
and then conclude this section with a summary of steps in the
algorithm.
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A. Mumford-Shah formulation: Continuous and Combinato-
rial

We begin by fixing our notation. Agraph consists of a pair
G = (V,E) with vertices (nodes)v ∈ V andedgese ∈ E ⊆
V × V , with N = |V | and M = |E|. An edge,e, spanning
two vertices,vi andvj , is denoted byeij . A weighted graph
assigns a value to each edge called aweight. The weight of an
edge,eij , is denoted byw(eij) or wij and is assumed here to
be nonnegative. Thedegreeof a vertex isdi =

∑

w(eij) for
all edgeseij incident onvi. The following will also assume
that our graph is connected and undirected (i.e.,wij = wji).
An image may be associated with a graph by identifying each
pixel with a node and defining an edge set to represent the local
neighborhood relationship of the pixels (e.g., a 4-connected
lattice).

Since the inception of the Mumford-Shah functional, there
have been several related notions of what constitutesthe
Mumford-Shah functional. In this work, we follow the level
set literature to consider the piecewise smooth model [43],
[55], formulated as

E(f, g,R) = α

(

∫

R

(f − p)2 +

∫

Ω\R

(g − p)2

)

+

µ

(

∫

R

||∇f ||2 +

∫

Ω\R

||∇g||2

)

+ νΓ(R), (1)

whereΩ represents the image domain,f represents the smooth
foreground function,g is the smooth background function,
R is the region of the image comprising the foreground,
p is the pixel intensity,Γ(R) is the length of the contour
of region R, and α, µ, ν are free parameters. For ease of
exposition, we assume that the image consists of grayscale
values only, although the formulation could easily be extended
to color or multispectral images. Although the piecewise-
smooth Mumford-Shah model has proven useful images in
which the objects are piecewise-smooth, other types of object
appearance (e.g., textured objects) are not well-modeled by
this form of the Mumford-Shah functional. To simplify the
parameter space (and notation) we assume that all three free
parameters are strictly positive and divided by the value ofµ.
Consequently, we will omit the inclusion ofµ in the remaining
exposition. Similarly motivated models were considered by
Blake and Zisserman, who referred to the energy as the “weak
membrane model” [5] and by the influential paper of Geman
and Geman [29]. A comprehensive exposition on the properties
of this model was provided by Ambrosioet al. [1].

Our formulation of (1) on a graph employs the combi-
natorial analogues of continuous differential operators (for
justification and introduction to these combinatorial analogues,
see [12], [40], [51]). Although combinatorial representations
of differential operations are fairly well established, the chal-
lenge in the graph reformulation of any particular energy (or
PDE) is to associate variables in the continuous formulation
with representative combinatorial structures (pixels, edges,
cycles, etc.) and, as in the continuous case, to produce a
useful representation of a “contour”. Specifically, each integral
may be considered as a pairing between a chain (domain

of integration) and a cochain (function to be integrated).
Associating each pixel in our image with a node in the graph,
the integration over a collection of pixels (in setSR ⊆ V )
may be represented by theN × 1 chain vectorr, where

ri =

{

1 if vi ∈ S,

0 otherwise.
(2)

The other two variables inE are cochains taking real values,
i.e., fi ∈ R, gi ∈ R. Note also that the imageI is treated as a
vectorized, real-valued cochain existing on the nodes (pixels).
Both chains and cochains will be treated as column vectors.

The first (data) term in (1) concerns quantities associated
with pixels (i.e., intensities). We chose above to associate
nodes with pixels, sop, f , and g must represent 0-cochains
(functions mapping nodes to real numbers). This designation
matches the continuous conception of these quantities as scalar
fields. Since the data term in (1) integrates over a set of the
domain for whichp, f andg are defined,r must represent a
0-chain indicating a region of the domain. Putting togetherthe
above observations, the analogue of the first term on a graph
is

E1(f, g, r) = rT (f − p)
2

+ (1 − r)
T

(g − p)
2
. (3)

In order to formulate the second term, recall that the
combinatorial analogue of the gradient operator is given by
the node-edgeincidence matrix [40]

Aeijvk
=











+1 if i = k,

−1 if j = k,

0 otherwise,

(4)

for every vertexvk and edgeeij , where eacheij has been
arbitrarily assigned an orientation. Consequently, we may
write the gradient off as the productAf . However, since
gradients arevector functions (corresponding to cochains on
edges in the combinatorial setting) and the integral in the
second term is performed over ascalar function (i.e., the
norm of the gradient at each point), we have to transfer the
gradient cochain associated with edges back to a scalar cochain
associated with nodes. Such an operator may be represented
by the absolute value of the incidence matrix, although each
edge is now double counted, requiring a factor of one-half.
Specifically, the second term may be formulated as

E2(f, g, r) =
1

2

(

rT |A|T (Af)
2

+ (1 − r)
T
|A|T (Ag)

2
)

.

(5)
Finally, the contour length term may be formulated on a

general graph by counting the number of edges spanning from
R to R, whereR indicates the set complement ofR. Such a
measure may be represented in matrix form as

E3(f, g, r) = 1T |Ar|. (6)

If our graph is a standard 4-connected lattice (i.e., a 5-point
stencil), then (6) produces theℓ1 measure of the contour of
region R. If we view the graph as embedded inRN and
wish to measure a Euclidean contour length, it was shown by
Boykov and Kolmogorov [8] that a suitably weighted graph
(and corresponding incidence matrix) could instead by used
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in (6). However, since the Boykov-Kolmogorov construction
was designed to produce a Euclidean contour length, we
recommend only using this construction in termE3. For
purposes of generality and clarity here, we will continue to
use the sameA in all terms.

All three terms may now be recomposed to define the
combinatorial analogue of the piecewise smooth Mumford-
Shah model, i.e.,

E(f, g,R) = α
(

rT (f − p)
2

+ (1 − r)
T

(g − p)
2
)

+

1

2

(

rT |A|T (Af)
2

+ (1 − r)
T
|A|T (Ag)

2
)

+ ν1T |Ar|. (7)

Given the above definition of the combinatorial analogue of
the Mumford-Shah functional, we now proceed to show how
to optimize the variablesf , g andr.

B. Optimization

We adopt the alternating optimization procedure common
to Mumford-Shah optimization [20], [55]. The alternating
optimization procedure first treats the current contour,r, as
fixed and then finds the optimalf and g. Given anf and g,
the optimalr may then be found. We begin by considering
the production of an optimalf andg from a fixed contour,r.

Before taking a partial derivative of (7) with respect tof ,
it is useful to rewrite the terms of (7) involving f in matrix
form,

E(f,R) = α (f − p)
T

diag(r) (f − p)+
1

2
fT AT diag (|A|r) Af.

(8)
Taking a partial derivative of (8) with respect tof yields

∂E

∂f
= 2α diag(r) (f − p) + AT diag (|A|r) Af. (9)

The diag(·) operator represents the diagonal matrix formed
by placing the argument vector along the diagonal. Since both
the first and second terms of (8) are positive semi-definite, the
zero of (9) represents a minimum of (8). Consequently, the
optimal f given a contour satisfies
(

2α diag(r) + AT diag (|A|r) A
)

f = 2α diag(r)p. (10)

Consider the setR∗ = {vi|if vi ∈ R or ∃eij s.t. vj ∈ R}
which includes all of the nodes inR as well as any nodes in
R that are connected with an edge toR. From (10) it is clear
that the nodes in the complement ofR∗, R∗, can take any
value off while satisfying (10). In other words, this part off
does not contribute to the energy in (7) and therefore may be
ignored. Consequently, the optimum values off in R∗ may
be found by solving

(

2α diag(rR∗) + AT
R∗diag (|AR∗ |rR∗) AR∗

)

fR∗ =

2α diag(rR∗)pR∗ . (11)

It is important to note that since the energy computation in
(7) reaches across the boundary by one pixel to produce the
smoothness estimate, the optimum solution forf includes
values at these pixels across the border. Since the system in
(11) will generally forcexi = xj across the border separating

nodesvi and vj , there will be no contribution to the energy
in (7) from a gradient between these nodes. However, if any
of the border nodes inR are connected to more than one
node insideR (e.g., at a corner) then the solution in (11) will
cause the border node to take the average value of the nodes
inside R and this node will contribute to the energy in (7).
This one-pixel reach across the boundary is a result of the
combinatorial analogue of the gradient norm and is necessary
to ensure optimizability of the energy in (7), but does not
empirically contribute in any significant way to the energy of
the final solution.

We may follow the same steps as above to find the solution
for g. Specifically, define setQ = R and Q∗ = {vi|if vi ∈
Q or ∃eij s.t. vj ∈ Q}, leading to a solution of
(

2α diag(rQ∗) + AT
Q∗diag (|AQ∗ |rQ∗) AQ∗

)

gQ∗ =

2α diag(rQ∗)pQ∗ . (12)

We can now address the optimization ofr, given a fixed
f and g. Noting that all three terms of (7) are submodular
linear functions ofr, we can solve forr as a max-flow/min-
cut computation [38]. The reduction to a max-flow/min-cut
computation may be more easily seen by writing the energy
of (7) in traditional summation form as

E(f, g, r) =
∑

vi



ri



α (fi − Ii)
2

+
1

2

∑

eij

(fi − fj)
2







+

∑

vi



(1 − ri)



α (gi − Ii)
2

+
1

2

∑

eij

(gi − gj)
2







+

ν
∑

eij

|ri − rj |. (13)

In effect, the first and second terms describe unary terms
penalizing data infidelity from the reconstructed image and
nonsmoothness in the reconstructed image. The contour length
(third) term penalizes contour length and is written in terms
of strictly positive weights, producing a submodular energy
that may be optimized effectively with a max-flow/min-cut
computation. Minimum cut computations on graphs represent-
ing images are very fast using the algorithm of Boykov and
Kolmogorov [9].

Unfortunately, use of a max-flow/min-cut computation to
optimize (13) requires knowledge off and g in the entire
domain. However, since the values inf outside ofR∗ and
the values ing outside ofQ∗ make no contribution to the
energy in (7) we could useany solution for f and g in
these regions without affecting the energy. Consequently,some
regularization is necessary to assign these values by extending
the known solutions forfR∗ andgQ∗ , so that the optimization
in (13) can be performed.

C. Extension of the reconstructed image

Outside of regionR∗, any values off will satisfy (10).
Consequently, this part off does not contribute to the com-
putation of the energy in (7) and could simply be ignored if
the values were not necessary to produce an optimal boundary
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(a) Boundary (b) Foregroundf with extension (c) Backgroundg with extension

Fig. 1: Optimization of (13) using max-flow requires specification of values for the reconstructedforeground image functionf in the region
outside the foreground regionR. Using a Laplace equation regularizer obtains the values forf and g for the entire image domain shown
above.

location via minimization of (13). In fact, the existing level
set literature that optimizes the contour via gradient descent,
ignores the values off outside regionR, since the values off
distant from the contour are inconsequential. However, in our
combinatorial formulation, we desire to take a contour step
on the entire domain, regardless of the proximity of the new
contour to the previous contour. Consequently, we will needto
produce a meaningfulf outside of regionR∗. Although any
choice off outside ofR∗ will have no impact on the energy,
the solution forf within R∗ is uniquely determined relative
to any boundary. Therefore, our approach will be to determine
the optimalf within R∗ by solving (11) and use this solution
to generate anf outside ofR∗ that may be used as guidance
for generating the next contour optimization.

An important assumption aboutf is that it is a continuous
function at the contour. Therefore, in order to enforce max-
imum smoothness betweenf inside R∗ and the extendedf
outside ofR∗, we propose to regularize the unknown part of
f by constructing thef outside of regionR∗ that satisfies the
Laplace equation while treating thef inside ofR∗ (obtained
from (10)) as Dirichlet boundary conditions. We apply the
same procedure for extendingg outsideQ∗. Note, however,
that other extensions off andg are possible and may lead to
improved performance.

We pause briefly to discuss the relationship of our method
of extension to those done previously. The method mentioned
here is most similar to that of Vese and Chan in [56]
where they essentially discuss first solving the functionsf

and g inside their appropriate domains in order to minimize
the functional, and then extending each of these functions
outside of their respective domains by solving the Laplace
equation with Dirichlet boundary conditions on the contour,
and Neumann boundary conditions on the image boundary. A
seemingly similar method of producing function extensions
has been documented by Broxet al. in [15] where they
compare various approximations to a single PDE containing an
indicator function that can be solved to produce a meaningful
function on the entire domain. While the PDE is still elliptic
in this method, when the single PDE is solved the values of
the function outside of the active domain have the potentialto
affect the values of the function inside the active domain, and

therefore the resulting function may not be optimal at each
step inside the active domain. This is not true of the two-
step approach both presented in [56] and also used presently.
Zhaoet al. discusses the method of extending functions via a
Hamilton-Jacobi equation that is used in much of the previous
level set work [61]. Bressonet al. discuss the necessity for
extensions, but leave out the details for their specific extension
method [13].

We may solve the Laplace equation on a general graph,
given boundary conditions, by using the technique of [31],
which we briefly review. Recall that the Laplacian matrix is
defined as

Lij =











di if i = j,

−wij if vi andvj are adjacent nodes,

0 otherwise,

(14)

and thatL = AT CA, for some diagonal matrixC taking
the edge weights along the diagonal. If we treat the solution
to (11), fR∗ , as fixed Dirichlet boundary conditions, we can
decompose the Laplacian matrix into

[

LR∗ B

BT LR∗

]

, (15)

which allows us to solve the combinatorial Laplace equation
by solving the system

LR∗fR∗ = −BT fR∗ . (16)

In summary, the optimum forfR∗ andfR∗ may be produced
by solving sparse, positive definite systems of linear equations
for which many fast methods exist (see [30]).

Following the same steps as above, the optimalgQ∗ is given
by solving the linear system

LQ∗gQ∗ = −BT gQ∗ . (17)

An example of thefR, fR, gR andgR computed for a given
boundary with this regularization method is shown in Figure
1.

We conclude the section with observations about how our
graph formulation compares with discretized contour evolution
approaches of the continuous energy. First, in contrast to
the standard continuous methods, at each iteration we are
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solving for a reconstructed image and contour thatoptimally
minimize the Mumford-Shah energy, given a fixed contour
(for the reconstruction computation) or a fixed reconstruction
(for the contour computation). An important consequence of
these globally optimal steps is thatall correct implementations
will produce an equivalent answer. Since the same answer
is produced regardless of implementation, there is no need
to choose any implementation parameters. For example, any
linear system solver run to convergence will produce the same
answer to (11). Therefore, Gaussian elimination might be
faster or slower than conjugate gradients, but both methods
will produce the same answer if run to convergence and
therefore there is no need to be concerned that implementation
choices will have an effect on thequality of the final solution.
Second, because our contour optimization is not performed
via gradient descent on the contour location, the contour
update is capable of non-local movement to “snap” to the best
contour, even if initialized far away. This non-local movement
results in greater robustness to initialization, far feweriter-
ations (translating to faster speed) and greater robustness to
choices of weightings for the three terms in the Mumford-
Shah functional. Additionally, as shown in SectionIV-A , this
non-local movement capability allows our graph formulation
to jump over intervening structures of arbitrary size to find
a low-energy solution to the Mumford-Shah functional. We
note that similar properties (non-local movement, decreased
dependence on implementation parameters) have also been ob-
tained by recent continuous formulations that produce global
optimization of the contour at each step [13], [21].

Although our graph formulation produces optimal solutions
for each alternating step of the Mumford-Shah minimization,
it is important to stress that there is no guarantee that a
global optimum will be obtained for the joint energy. In
fact, it is entirely unclear whether or not alternating global
energy minimization steps will produce a lower joint energy
than a series of small alternating local energy minimization
steps. Therefore it is an empirical question to determine which
optimization strategy produces a lower joint energy for real
images. Both optimization strategies (graph and level set)are
empirically tested in SectionIII against a battery of natural
images to better understand which optimization strategy works
best on the joint energy in practice.

D. Relationship to Graph Cuts

The Graph Cuts algorithm for image segmentation and
denoising was first introduced in [11], [7]. This algorithm has
been greatly extended since inception to where it is somewhat
unclear what comprises “Graph Cuts”. However, all algorithms
under the title “Graph Cuts” seem to have the following
qualities: 1) Defined on a (possibly directed) graph, 2) Using
submodular edge weights to reflect likely contour locations, 3)
Possibly including an intensity prior assigning each pixelto
foreground/background, 4) Possibly including hard constraints
(seeds) to force pixels to be foreground or background, 5) Op-
timization via a max-flow/min-cut computation, 6) Producesa
global optimum of the desired energy.

With the above definition of the term “Graph Cuts”, it is
possible to observe that the contour optimization of (13) in

the combinatorial formulation of the Mumford-Shah shares
much in common. Specifically, in (13), intensity priors are
present (from the data term), the weights are submodular and
the optimum of (13) is obtained via a max-flow/min-cut com-
putation. However, by examining the above list of ingredients
for Graph Cuts, one may also notice differences with the
combinatorial Mumford-Shah. First, the edge weights are not
modified to reflect likely contour gradients. Second, in addition
to the intensity priors, (13) involves an additional unary term
penalizing the estimate of the normalized gradient near the
pixel (obtained via the smoothness term in the Mumford-Shah
functional). Third, no hard constraints (seeds) are imposed to
constrain the foreground/background assignment of any pixels.
Fourth, there is no reconstructed image variable (i.e.,f , g)
present in Graph Cuts. Finally, the solution of (13) is just
one iteration in the overall optimization of the Mumford-
Shah functional. Although the contour solution of (13) is
optimal for each iteration, the overall energy minimization of
the Mumford-Shah energy still produces a local minimum.
It should be noted that certain extensions of the Graph Cuts
work (e.g., GrabCuts [4], [48]) also utilize Graph Cuts as
a subroutine while re-estimating the intensity priors at each
iteration. However, unlike the Mumford-Shah formulation,this
work does not include a specific smoothness penalty term
or a reconstructed image, hard constraints are included and
the edges are weighted by image gradients. Additionally, it
should be noted that we are not arguing that the Mumford-
Shah functional is better or worse than these other energy
minimization approaches, but rather that the Mumford-Shah
model is still heavily applied and that the optimization is
currently done using gradient descent on level set functions.
Given the traditional successes of applying a minimization
of the Mumford-Shah energy and the recent successes of
Graph Cuts (and its derivatives), it is not surprising that the
algorithms bear a strong relationship.

E. Algorithm summary

The steps of the combinatorial Mumford-Shah algorithm are
therefore:

1) Initialize the functionsf , g and the contourr.
2) Solve the linear system in (11) for the optimumfR∗ .
3) Solve the linear system in (16) for the extension offR∗

to fR∗ .
4) Solve the linear system in (12) for the optimumgQ∗ .
5) Solve the linear system in (17) for the extension ofgQ∗

to gQ∗ .
6) Solve the max-flow/min-cut problem in (13) for the

optimum contourr
7) Repeat steps 2–6 until the contour location remains

constant.
Finally, we make a few observations about this procedure:
1) Traditional gradient descent-based level set implementa-

tions of the Mumford-Shah functional are not required
to perform steps 3 and 5 on the entire image domain,
since the extensions off andg far from the contour are
not pertinent to a gradient descent method. Although
the inclusion of steps 3 and 5 are expected to double
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(a) Initial contour (b) Iteration 5 (c) Iteration 10 (d) Iteration 15 (e) Iteration 19 (final)

(f) Initial reconstruction (g) Iteration 5 (h) Iteration 10 (i) Iteration 15 (j) Iteration 19 (final)

Fig. 2: Demonstration of correctness that our combinatorial formulation and optimization of the Mumford-Shah functional correctly recovers
the contours of a piecewise smooth image and reconstructs the piecewise smooth approximation accordingly. Top: Contour evolution from
initialization to stabilization. Blue contours indicate contour location. Bottom: Corresponding reconstruction of the piecewise smooth estimate
of the image, given a contour.

the computation of the function estimation step, the
drastic reduction in the number of iterations observed
with our graph formulation (see SectionIII ) more than
compensates for these additional computations.

2) The same steps apply to solving the Mumford-Shah
functional in any dimension — The only difference be-
tween dimensions is in the underlying lattice employed
(e.g., a 6-connected lattice compared to a 4-connected
lattice).

3) Although our primary focus is on the contour location
(e.g., a segmentation), it is important to note that a
piecewise smooth approximation to the image is also
obtained via the solution tof and g. Consequently,
our algorithm applies equally to image/signal denoising
problems.

4) Due to the generality of the formulation, the same
algorithm can be applied to the segmentation, clustering,
denoising, etc. of any data defined on a graph. Examples
of the application of this algorithm to the more general
setting is given in SectionIV-B.

5) Since global optima are obtained at each step, no im-
plementation parameters (e.g., step size) are necessary
in our graph formulation.

6) Since global optima are obtained at each step (relative to
the choice of extension functions), the energy obtained
after each minimization can never increase. In practice
we have always observed rapid convergence.

7) In the context of image processing in which the graph
is a lattice embedded intoR2 or R3, combinatorial
optimization does have some drawbacks with respect
to the level set methods. Specifically, since the regions
are parameterized by binary sets of nodes, there is

no notion of sub-pixel accuracy available. Additionally,
approximation of a Euclidean length of the contour via
a large number of edges requires significant memory,
especially in 3D.

As a demonstration of correctness, Figure2 demonstrates
that our combinatorial formulation and optimization appropri-
ately segments a piecewise smooth image of size256 × 256
pixels.

III. R ESULTS

The positives and negatives of Mumford-Shah segmentation
and reconstruction have been well-discussed in the literature.
Our reformulation of the Mumford-Shah functional on a graph
is intended to permit usage of the arsenal of combinatorial
optimization methods to minimize the Mumford-Shah energy
more quickly and to find lower-energy solutions. Conse-
quently, our experiments focus on answering the following
questions about the relative merits of traditional gradient
descent-based level set implementations of the Mumford-Shah
energy and the combinatorial optimization applied to our graph
formulation of the Mumford-Shah functional:

1) Speed: Which procedure finds a solution with fewer
iterations? What is the relative cost per iteration? What
is the dependence of performance on resolution?

2) Initialization: Which procedure is more robust to initial-
ization of the contour?

3) Parameters: Which procedure is more robust to the
choice of parameter settings?

4) Energy minimization: Which procedure produces solu-
tions with lower energy?

To answer the first three questions, we begin with a toy
image of a black square on a white background. Such a trivial
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(a) Toy image (b) Box (c) Crown (d) Squares

Fig. 3: Toy image to compare the speed of traditional contour evolution implementation with proposed combinatorial optimization of the
Mumford-Shah functional presented in this paper. The contours (blue) indicate three different initializations used to generate results presented
in Table I.

image was chosen since 1) There is a clear energy minimum,
2) A relatively smooth energy landscape, 3) The same answer
for a wide range of parameters, 4) A clear stopping criterion
(i.e., when the contour matches the square). For these reasons,
we can perform controlled experiments to probe the answers
to the questions posed above about the relative performance
of traditional contour evolution implementations (via gradient
descent on level sets) and our new graph formulation of the
Mumford-Shah energy. The last question regarding relative
energy of the solutions is addressed by running both the graph
and level set optimizations on a series of 50 natural images,
comparing their resulting energies.

We compared the combinatorial optimization of our graph
formulation method with an efficient gradient descent-based
narrow-band level set implementation of the continuous for-
mulation similar to the one presented in [55] although the
original piecewise-smooth level set implementation was pre-
sented in [20]. Great care was taken to ensure the correctness
and efficiency of the level set implementation so that a fair and
accurate comparison could be made between the two methods.
In [55], the curve evolution is written as an initial value
problem on a locally evolving geometric contour, and not as an
initial value problem on a smoothed Heaviside function as in
[20]. In our implementation of the level set method however,
we do not initialize with the piecewise constant solution as
done in [55]. The method employed alternating optimizations
of the contour evolution and of the smooth functions as in
the graph method and as has been used in all Mumford-Shah
implementations of which we are aware. For efficiency, the
level set function was computed and stored only in a narrow
band around the contour, in which we maintained the sub-
pixel position of the contour. Force extensions were computed
on pixels which neighbored the contour as illustrated in [49].
When computing the level set function update, the spatial
derivatives associated with the curvature term were computed
with central differences, and the spatial derivatives associated
with the data terms were computed with the numerical scheme
detailed in [44] to ensure that the viscosity solution was
obtained for the portion of the level set evolution that is a
Hamilton-Jacobi equation. At each contour evolution step,we
updated with an explicit forward-Euler scheme in which the
maximally stable time step was taken to ensure both stability

and speed of the level set function evolution.
Our implementation of max-flow/min-cut was taken directly

from the online code of Vladimir Kolmogorov. In order to
produce a comparable comparison between the level set opti-
mization and our graph framework in these 2D experiments,
we choose to calculate contour length of the cut with respect
to a Euclidean measure in (6) by using the weighted incidence
matrix of the graph corresponding to the construction of
Boykov and Kolmogorov [8] with an approximation to the
Euclidean distance represented by a neighborhood connected
with a distance of two pixels.

A. Speed and initialization

Our first experiment examines the relative speed of tradi-
tional level set implementations and our new graph formula-
tion for the box image using various image resolutions and
contour initializations. In this experiment, we created three
initializations — A larger square surrounding the target square,
an erratic “crown”-shaped initialization centered on the target
square and small squares tiled throughout the image. These
three initializations are displayed in Figure3. For each of
these initializations, we measured the number of iterations
required to converge the level set via gradient descent and
graph methods to the known optimum solution and the average
time taken to produce one contour update for each method
when run on an Intel Xeon 2.40GHz processor with 1GB
of RAM. The time per iteration and time for a boundary
update may not be multiplied directly to produce a total
execution time since each method additionally requires an
image reconstruction update. However, this function update
is computed in roughly the same manner (assuming a finite
differences discretization in the level set method) for both
algorithms, although our combinatorial method requires twice
as much time for the function update since the level set method
does not require that the foreground/background functionsbe
extended. If the function computations are much larger than
the boundary updates then the relative execution times will
be close the to ratio of iterations. However, if the function
computations are much less than the boundary updates, then
the relative execution times will be close to the ratio of
the number of iterations for each method multiplied by the
boundary update time for each method. Since the linear system
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Initialization/Resolution LS iterations LS mean iter. time GR iterations GR mean iter. time

Box (64× 64) 41 0.002s 2 0.0064s
Box (128× 128) 126 0.0057s 2 0.0211s
Box (256× 256) 140 0.0199s 2 0.0838s
Crown (64× 64) 262 0.0023s 4 0.0091s

Crown (128× 128) 1393 0.0061s 3 0.0239s
Crown (256× 256) 110 0.0245s 4 0.1019s
Squares (64× 64) 294 0.0072s 3 0.0094s

Squares (128× 128) 940 0.0112s 3 0.0295s
Squares (256× 256) 540 0.0624s 3 0.1177s

TABLE I: Results of experiment comparing speed of convergence for level set (LS) solver and our graph (GR) formulation. Note: 1) The
parameter settings were chosen tobest favor the level set method in every experiment, 2) Exactly the same initializations were given to both
algorithms, 3) The size and spacing of the squares initialization was chosento favor the LS method. Time reported “per iteration” refers
to update of the contour location, since computation of the reconstructed image is the same in both methods (although this computation is
effectively doubled for GR since the inside/outside functions are extended beyond their respective region). Note that while the displayed
number of level set iterations may seem particularly high, it is important to note that the initializations in these cases are very distant from
the desired contour.

Initialization 1

iters. sec./iter.

Level Set 312 0.0061

Graph 4 0.0616

Initialization 2

iters. sec./iter.

Level Set 1523 0.0073

Graph 7 0.1176

Initialization 3

iters. sec./iter.

Level Set 1920 0.0101

Graph 5 0.1187 Final segmentation

Fig. 4: Comparison of number of iterations and speed of iteration for differentinitializations on ultrasound image. Parameters were chosen
to best benefit the level set method.

solver is not different for these two methods (on a Cartesian
grid), we simply report both the total number of iterations and
the boundary update time.

In this experiment, the parameters in the energy functional
were chosen to favor the level set method as much as possible,
as determined via manual adjustment. TableI displays the
results of this experiment. The time reported “per iteration”
in this table refers to the update of the contour location, since
the computation of the reconstructed image is the same in both
methods (although this computation is effectively doubledin
our graph method since the inside/outside functions need to
be extended beyond their region). Therefore, even though each
iteration of our graph method is slightly more expensive than
an iteration of the level set method, the improvement of 1–
3 orders of magnitude in the number of iterations causes the
total runtime of the graph method to be much less than that of
the level set method. Additionally, the graph method converges
within 2–4 iterations regardless of the resolution, initialization
or parameters. Note that while the displayed number of level
set iterations may seem particularly high, it is important to note
that the initializations in these cases are very distant from the
final contour.

These experiments suggest that the combinatorial optimiza-
tion of the Mumford-Shah functional produces the correct
solution much faster than the traditional level set optimiza-

tion, regardless of the resolution or contour initialization. We
remind the reader that the parameters were chosen to favor
the level set method. Choosing the parameters to favor our
proposed graph method would have resulted in a stronger
disparity in favor of the graph method. In the next section,
we detail the results of an experiment intended to measure the
robustness of the two approaches to parameter choice.

A third experiment was performed on a real ultrasound
image in the same manner as the first. An initialization was
introduced inside the target object, outside the object andthen
erratically inside and outside the object. The results in terms
of number of iterations and speed of each iteration are shown
in Figure 4 and correspond well with the results from our
synthetic experiment. Once again, the parameters of the terms
in the Mumford-Shah energy were chosen to best favor the
level set method and both methods converged to roughly the
same contour.

B. Parameter robustness

The choices of the term parameters in (1) can make drastic
differences in the optimal contour and reconstruction produced
by minimizing the Mumford-Shah functional. Even if the
optimal contour and reconstruction are the same for different
choices of parameters, the parameter choices could affect
the speed of convergence for a given initialization. In this
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Optimization algorithm Mean iterations Median iterations Iteration number standard deviation

Level set 1614.40 1520 391.80
Graph 2 2 0

TABLE II: Comparison of robustness to the three term parameters in (1). Using the (128× 128) toy image above with the “box” initialization,
for 50 trials we randomly chose the three term parameters from independent uniform distributions on the interval(0, 1) and ran both the level
set and combinatorial optimizations of the MSF. A randomly generated setof parameters was rejected and re-run if the target square was
not the minimum of the MSF. In all cases, combinatorial optimization produced the target square in two iterations, regardless of parameters.
Note that the number of iterations reported for the level set method in TableI was much less than the averages reported here due to the fact
that all of the results reported inI used parameters that were hand-selected to favor the level set convergence.

experiment, we examine the robustness of both the level set
and graph formulations of the Mumford-Shah energy to the
choice of parameters in terms of the number of iterations
needed to reach the optimum solution. Once again, we employ
the toy example of Figure3 . For this experiment, we used
the most simple, “box”, initialization of Figure3 since we
expect that both algorithms will reach the target contour for
all parameter choices. We ran fifty iterations in which the
parameters for each of the three terms of (1) were chosen
independently from a uniform distribution within the interval
of zero to one and then both the level set and graph algorithms
were applied to minimize the Mumford-Shah energy. If the
target square was not the optimum solution for the randomly
generated parameters, this parameter set was rejected and the
trial re-run. After each parameter set, the number of iterations
and average time per iteration were recorded.

The results of this experiment are displayed in TableII .
We see that the rate of convergence of the level set method
is highly dependent on the parameters, while the rate of
convergence for the graph method is completely independent
of the parameter set. Both algorithms exhibited independence
of the per iteration time on the parameter set. Empirically,the
results of this experiment concur with our experience that the
convergence rate, and solution achieved, of the graph method
is much less sensitive to the parameter settings than the level
set method. Note that the number of iterations reported for the
level set method in TableI was much less than the average
reported in TableII due to the fact that all of the results
reported in TableI used parameters that were hand-selected to
favor the level set convergence.

C. Energy minimization comparison

Beyond speed, our purpose in introducing combinatorial
optimization techniques for solving the Mumford-Shah func-
tional is to produce solutions with a lower energy than the
solutions obtained by conventional gradient descent-based
level set techniques. In order to compare solutions in terms
of minimal energy, we must address natural images for which
the energy landscape is nontrivial. In this section we apply
both the graph-based and level set algorithms to natural
images using the same initialization/parameters to empirically
compare the Mumford-Shah energies obtained by the final
solutions.

This experiment was performed on 50 different natural
images, of which 11 were from the Berkeley image database,
12 were miscellaneous photographs, and 27 were various
medical images (12 ultrasound, 4 CT, 5 MRI, 3 digital

microscopy, 1 fMRI, and 2 angiography images). For each
image, initializations and parameters were selected to produce
a contour (for at least one algorithm) that was semantically
meaningful. Cluster plots of the final graph MS energy vs. the
final level set MS energy are shown in Figure5 for these 50
images. In most cases, optimization of our graph formulation
of the Mumford-Shah functional produced solutions with an
equal or lower energy and sometimes produced solutions
with dramatically lower energy. In a few cases, the level set
formulation produced slightly lower energy (shown in Figure
6.)

The issue of computing the Mumford-Shah energy for
a given solution is complicated by the Euclidean bound-
ary length term. The measurement of Euclidean length
for a pixelated segmentation was addressed separately by
Boykov/Kolmogorov and Chan/Vese. Although it was shown
that in the limit, both of these measures produce the true
Euclidean boundary length, for a given finite segmentation
they may differ in their estimates. Since our combinatorial
formulation explicitly employs the Boykov/Kolmogorov mea-
sure and the level set implementation implicitly employs the
Chan/Vese measure, we were concerned that this difference
in Euclidean length measurements might bias the compara-
tive solutions produced by each algorithm. Consequently, we
computed the Mumford-Shah energy using both measures to
see if any discrepancy would affect our valuation of which
optimization method produced a lower energy. A scatter plot
showing the relative Mumford-Shah energies of the solution
using the Chan/Vese measurement is given in Figure5a while
the energies of the segmentations are recomputed using the
Boykov/Kolmogorov measurement of boundary length and are
displayed in Figure5b. However, as can be seen from the
figures, the difference between these two measures is minimal
and does not change the conclusion that the combinatorial
optimization produces consistently lower energies than the
level set optimization.

In Fig. 6 we show select images whose segmentations
differ in semantically meaningful ways. Note the more global
nature of the segmentations produced by the combinatorial
optimization method. This is a direct result of allowing the
graph method to make globally optimal cuts at each iteration,
while the level set method restricts the contour to progressing
by gradient descent. We also show two of the four images
where the level set optimization produced a segmentation with
lower energy than the graph based optimization6j and6k. We
believe that the lower-energy solution found by the level-set
method in these instances could have also been obtained by the
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(a) Energy cluster plot using level set-based contour length
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(b) Energy cluster plot using graph based contour length

Fig. 5: Cluster plots of final Mumford-Shah function energies comparing energy minimization methods over 50 images. Each “+” represents
an individual image showing the energy of graph solution vs. the energyof level set solution. Note that the only difference between the two
plots is that5a is measured with the approximation to Euclidean boundary length provided by Chan and Vese [19] and 5b is measured with
the approximation to Euclidean boundary length provided by Boykov and Kolmogorov [8].

graph method in this case if we had made a different choice
of extension functions.

IV. A DDITIONAL CAPABILITIES OF THE FORMULATION

In this section, we address two desirable aspects of our
combinatorial formulation that are not available with a tra-
ditional formulation and level set optimization. First, we
demonstrate the ability of a graph formulation to exhibit
non-local movement, since the optimal contour is found at
each iteration, there is no limitation that the contour move
to a nearby location. Consequently, the segmentation may be
found faster (by taking larger steps) but, more importantly, the
formulation also permits the contour to “jump over” spatial
obstacles that would prevent the contour from finding a low
energy. Second, we give an example of how our combinatorial
formulation permits the application of Mumford-Shah methods
to data associated with an abstract graph. Specifically, we use
the Mumford-Shah functional to perform filtering (piecewise
reconstruction) of image data defined on a space-variant data
structure intended to model the sampling scheme of the human
retina and on a point clustering problem.

A. Non-local movement

A key advantage of the contour optimization in our graph
reformulation of the Mumford-Shah energy is that it enables
movement to the optimal location at each iteration. For this
reason, our method is able to move to arbitrary image locations
as predicted by the solution to (13) depending on the current
estimate of the piecewise smooth reconstructions. The motion
of the contour is thusnot limited to local movements as are
traditional optimizations of the contour by gradient descent.

Figure 7 illustrates three situations that are able to be seg-
mented correctly by the proposed combinatorial optimization
of the Mumford-Shah functional, but where standard gradient
descent methods fail.

The piecewise smooth MSF may drive non-local movement
via insufficient smoothness, permitting the penetration ofan
annulus with a center comprised of pure noise. The final
segmentation shown in Figure7 is not achievable by gradient
descent of the contour.

In the millstone image, we are able to achieve correct
segmentation of the inner ring instantly. We would like to
draw attention to the method by which Chan and Vese [19]
were able to determine inner boundaries of objects. The ability
to segment this inner boundary was due to the mollified
Heaviside function that was used to approximate a region
indicator function. Indeed, one could argue that there always
exists some heavy-tailed mollified Delta function that could
achieve the segmentation of the inner ring for an annulus of
fixed thickness. However, such heavy-tailed Delta functions
ultimately sacrifice segmentation accuracy and thus, one must
modify the mollification kernel during the optimization if
high accuracy is desired. Such an implementation trick is
completely obviated by using our proposed method which
works for annuli of arbitrary thickness with no such temporary
sacrifice in accuracy.

The work of [13] shows the ability to naturally attain
such inner boundaries due to their method of total varia-
tion optimization using a modified Mumford-Shah functional.
Some level of non-local movement in solving the Mumford-
Shah functional with level set methods have been achieved
in [57] using additive operator splitting [58], however they
only illustrated the technique for the piecewise constant case.
Specifically, they did not present the idea of extending the
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(b) Brain
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(d) Cells
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GR: 0.57

(e) Ultrasound
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LS: 0.75

GR: 0.71

(f) Blood vessel
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GR: 0.56

(g) Breast
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GR: 1.08

(h) Gaelic
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GR: 1.55

(i) House

Initial

LS: 0.76

GR: 0.89

(j) Beach

Initial

LS: 0.82

GR: 0.90

(k) Snowy field
Fig. 6: Select images that show substantial or interesting differences between the traditional level set optimization and our proposed
combinatorial optimization of the piecewise smooth Mumford-Shah functional. Top Row: Original image with contour initialization, Middle
Row: Piecewise smooth reconstruction from the level set method is shownin middle row, Bottom Row: Piecewise smooth reconstruction
from the graph method is shown on bottom row. The corresponding energies are displayed above each reconstruction. Most images yield
lower energies with the graph method, but images6j and6k are two examples that exhibited slightly lower energy with the LS method.
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(a) Initial (b) Final (c) Initial (d) Final (e) Initial (f) Final

Fig. 7: Non-local movement: Since the contour optimization step in our graph formulation of the Mumford-Shah energy is not performed by
gradient descent, the final contour is permitted to jump to a location distant from the initial contour location. While this effect is sometimes
achieved in the literature by the use of mollified region indicator functions, wenote that the mollifier support must be wider than the width
of the annulus for such an approach to succeed.

approximation functions as in the proposed method. Addition-
ally, the work of Hinterm̈uller has the ability for non-local
movement [36].

Finally, we illustrate that distant (non-overlapping) initial-
izations are not a problem for the combinatorial method as they
are for methods that evolve the contour via gradient descent.
Such a poor initialization could occur via automatic initializa-
tion of outlier image data. Regardless of the distance of the
object to the initialized contour, our contour optimization is
able to quickly find such salient object boundaries.

It should be pointed out that some applications may indeed
prefer local evolution of a contour and that global minimiza-
tion of the functional is not always desirable. In this work,we
are interested only in the minimization of the energy. Due
to the minimization procedure, the proposed combinatorial
formulation progresses the contour in ways that are optimalat
each iteration. If non-local movement is considered undesir-
able for some segmentation tasks (e.g., perhaps the outsideof
the annulus is the target segmentation), it is possible to restrict
the movement of the contour to a fixed distance from the
present contour. This restriction may be easily accomplished
by fixing ther values in the contour optimization that are more
than a predetermined distance,ρ, from the present contour.
Using this device, the contour would not change its location
pastρ pixels of its location at the previous iteration.

The term “non-local movement” is used in this paper to
represent the ability of the contour to make arbitrarily large
jumps in space. This goal is different from that in the recent
work on Sobolev Active Contours [52], in which the authors
desired to change the notion of what it means to be a “local”
deformation on the space of curves. Thus, the authors in [52]
still use gradient descent, only with a different notion of how
the gradient is defined. The Sobolev Inner product as proposed
in [52] does not allow for the non-local movement exhibited
in Fig. 7. Simply stated, our method is not a gradient descent
approach, and seeks to minimize the energy using an entirely
different scheme than gradient descent.

B. Mumford-Shah on a general graph

Image processing techniques are typically applied to
Cartesian-sampled images in 2D or 3D with a local neigh-
borhood structure. However, may other kinds of data exist
in which the same tasks of clustering (i.e., segmentation) or

filtering are important. In order to apply our combinatorialfor-
mulation of the Mumford-Shah function, all that is necessary
is to have a series of finite data points for which it is possible
to define a neighborhood relationship (edge set) and such that
each data point has an associated value (or vector of values).
Therefore, by formulating the Mumford-Shah functional on a
general graph, our algorithm has straightforward application
to clustering points in a feature space or mesh smoothing and
segmentation (see [31] for more examples from this point of
view).

In this section, we choose two different application areas
for demonstrating our general formulation of the Mumford-
Shah energy. The first application is to a piecewise smooth
reconstruction of a non-uniformly sampled image and the
second application is to point clustering.

Non-uniformly sampled images may occur in applications
due to the image acquisition device (e.g., ultrasound). Ad-
ditionally, such sampling of images has also been heavily
studied because of the connection to the sampling of biological
retinas [47], [3], [31]. These biological retinas may exhibit
a wide range of sampling [37], but the primate sampling
structure may be described as consisting of a foveal pit of
high density sampling in the center of visual space with
an exponential reduction in sampling toward the periphery.
Using the idealized sampling of the human retina provided
in the free Graph Analysis Toolbox [32], we imported a
standard Cartesian image to this foveal structure and optimized
the Mumford-Shah functional to produce a piecewise-smooth
reconstruction of the data. The results are displayed in Figure
8. Note that the only change necessary to employ this foveal
structure was to change the node and edge set of the graph to
match the non-uniformly sampled image (given by the Graph
Analysis Toolbox, in this case), which then provides a newA

operator. Given thisA operator, the procedure in SectionII-E
may be applied exactly as described to produce the minimum
of the combinatorial formulation of the Mumford-Shah energy.

Our combinatorial formulation of the Mumford-Shah energy
applies not only to image data, but rather to any function
assigning values to the graph nodes (a 0-cochain). Conse-
quently, we may take the coordinates in feature space of a
clustering problem and directly apply our algorithm to perform
the clustering. In Figure9 we generated two overlapping
point clouds with 2D features (x and y coordinates) and con-
nected the nodes with a Delaunay triangulation. We may treat
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(a) Cartesian image (b) Foveal structure (graph) (c) Foveal image (d) Piecewise smooth recon.

Fig. 8: Formulating the Mumford-Shah on a general graph permits usage on nonuniformly sampled images that was not available with
previous formulations/optimizations. Here, we present the piecewise smooth reconstruction of an image that is resampled in accordance with
the foveal sampling exhibited by the human retina [47], [31].

(a) Clustering problem (b) Clustering (boundary) obtained (c) Reconstructed point coordinates

Fig. 9: Our graph formulation of the Mumford-Shah energy allows nonstandard applications such as clustering or mesh smoothing. In this
example, the x and y coordinates of each point were used in place of the image intensities as the function to be reconstructed. The clustering
obtained is shown in (b) where points in different clusters are colored red or green and the edges spanning the boundary are colored light
blue. In (c) the reconstructed (smoothed) coordinates for each pointare shown.

the foreground/background coordinates as independent scalar
functions, which may be thought of as adding a second set
of data/smoothness terms into (7). The clustering (boundary)
and reconstructed coordinates for foreground and background
are shown in Figure9. Note that this problem is intended to
demonstrate the generality of our formulation rather than the
difficulty of this particular clustering problem.

V. CONCLUSION

In this work, we began by reformulating the classical
Mumford-Shah energy functional in terms of analogous dif-
ferential operators on graphs. With this reformulation, weare
able to apply the established arsenal of combinatorial opti-
mization techniques for producing reconstruction and contour
updates.

Our experiments indicate a dramatic improvement of our
graph-formulated optimization over traditional gradientde-
scent approaches for contour evolution. This improvement
is in terms of speed, robustness to initialization, robustness
to parameter settings and in the production of a solution
representing a lower Mumford-Shah energy. Additionally, we
employ a global combinatorial optimization technique thatis
not based on gradient descent to solve our graph formulation
of the Mumford-Shah functional, which permits non-local
movement of the contour to find low energy solutions.

Although our measured comparisons with the traditional
level set method were performed in 2D, our formulation
applies equally to 3D lattices. Additionally, in strong contrast
to traditional methods of formulation and optimization of the
Mumford-Shah functional, we demonstrated that our method
permits application on arbitrary graph structures, including
non-uniformly sampled images. Future work includes:

1) Introduction of multiple labels in the contour computa-
tion to address triple points and other junctions for which
hierarchical methods and multiphase level sets have been
employed [55], [41], [56].

2) Exploration of other choices for extending thef and
g reconstructions beyond their region of calculation,
other than the Laplace equation employed here. It is
the view of the authors that the existence of global
optimization methods for the contour location highlight
the importance of the extension choice, which has not
been addressed as an issue of fundamental importance
in the literature.

Finally, we hope that this work has illustrated the idea that
a reformulation of traditional (continuous) PDE approaches
in terms of their analogous differential operators on graphs
(combinatorial operators) can permit the use of powerful
combinatorial optimization techniques that may more quickly
find lower energy solutions when compared to their standard
level set counterparts. Although our primary motivation for
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reformulating traditionally continuous energies in termsof
combinatorial operators is to provide faster, simpler, lower
energy solutions capable of non-local movement of contours,
it is important that a graph-based formulation also permits
application of the same techniques to more abstract domains,
such as data clustering [23], mesh processing [54] and space-
variant vision [47].
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