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The Piecewise Smooth Mumford-Shah Functional
on an Arbitrary Graph
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Abstract—The Mumford-Shah functional has had a major the reconstruction function and the contoug]] [20], [55],
impact on a variety of image analysis problems including image [14]. The results of performing this style of optimization are
segmentation and filtering and, despite being introduced over \ye|| known and achieve satisfactory results that are usable
two decades ago, it is still in widespread use. Present day . . . L .
optimization of the Mumford-Shah functional is predominated for.d|.ffer.ent imaging applicationss). U.nfortuna.tely, this
by active contour methods. Until recently, these formulations Optimization of the Mumford-Shah functional using contour
necessitated optimization of the contour by evolving via gradient evolution techniques (typically implemented with gradien
descent, which is known for its overdependence on initialization descent on level sets) is slow primarily due to the smallsstep

and the tendency to produce undesirable local minima. In order ha¢ the contour must take at each iteration. This slowness
to reduce these problems, we reformulate the corresponding .

Mumford-Shah functional on an arbitrary graph and apply the 'S exacerbated by the fact that a very small perturbation
techniques of combinatorial optimization to produce a fast, low- Of the contour can have a relatively large effect on the
energy solution. In contrast to traditional optimization methods, optimal reconstruction function. Additionally, theseditéonal

use of these combinatorial techniques necessitates consideratio methods often require many implementation choices (e.g.,

of the reconstructed image outside of its usual boundary, requir jypjlementation parameters) and the result of these choices
ing additionally the inclusion of regularization for generating dif in the final It
these values. The energy of the solution provided by this may cause diiterences in the final result.

graph formulation is compared with the energy of the soluton  Although new functionals for segmentationffiltering con-
computed via traditional gradient descent-based narrow-band tinue to be developed, the Mumford-Shah functional is still
:‘eve| Tett' methodds- I.his_ C?mpafiszn demlonStfateS that Oulr tglraph very widely used and optimized with level set methods (see
ormulation and optimization produces lower ener ; ;
than the traditionzf\)l gradient gescent based conto%); se(\)/(;JIllj?igi [.26]’ [59], [22].’.[59]’ [49], .[25]. for a variety of re_cent applica-
methods in significantly less time. Finally, we demonstrate the t|_0r_15). In addmo_n to appllcatlons,_recent work in the cartgp )
usefulness of the graph formulation to app|y the Mumford- vision Commun|ty haS alSO Cont|nued to addl’eSS theoret|ca|
Shah functional to new applications such as point clustering and aspects of the Mumford-Shah functional and its optimizatio
filtering of non-uniformly sampled images. Brox et al. have recently shown the Mumford-Shah functional
Index Terms—Level sets, active contours, piecewise smootht0 be interpretable as a first order approximation of &an
Mumford-Shah, combinatorial optimization, graph reformulation  posteriori maximization [L4]. Efficient level set segmentations
based on the Mumford-Shah functional have been presented by
Piovanoet al. in [45], who show that the global statistics can
I. INTRODUCTION be approximated with Gaussian weighted local statistibesé

HE Mumford-Shah functional was devised to formulat&ethods perform their minimization with level sets based on
the problem of finding piecewise smooth reconstructiot§e standard gradient descent approach. Also recent neethod
of functions (e.g., images) as an optimization proble].[ have appeared that present piecewise smooth segmentations
Optimizing the Mumford-Shah functional involves determinWithout use of gradient descent. Bresseinal. has shown,
ing both a function and a contour across which smoothnga@sed on the works of Chaet al. and Chambolle, that the
is not penalized. Unfortunately, since smoothness of the f@st global minimization of the boundary (with functiondde
construction is not enforced across the contour and sinee fied) in a modified Mumford-Shah functional is achievable
contour is variable in the optimization, the functional ist n Without use of explicit curve evolution by taking advantage
easily minimized using classical calculus of variations. ~ Of @ dual formulation of the TV-normif], [21], [1€]. An
Given a fixed contour it is possible to solve for the opti€t al. achieve state-of-the-art piecewise smooth segmentation
mal reconstruction function by solving an elliptic PDE witHvithout the explicit use of contour evolution by performing
Neumann boundary conditions. Additionally, given a fixe@radient descent minimization of phase field Hintermiiller
piecewise smooth reconstruction function, it is possitde €t a. has reported inexact Newton-style optimization on the
determine at each point on the contour, the direction af@ntour for the Mumford-Shah functional using conjugate
speed that the contour should move to decrease the funictiog@dients £6].
as quickly as possible. Thus, most methods for solving thePractical energy minimization problems formulated on a

Mumford-Shah functional involve alternating optimizatiof finite series of variables can often be solved efficienthngsi
combinatorial (graph-based) algorithmz1, [3€], [53], [50].
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many PDEs formulated iR equivalently on a cell complex SectionlI-C.

(graph). By reformulating the conventional, continuouBEP  Graph formulations of the Mumford-Shah have previously
on a graph it becomes straightforward to apply the arsergipeared in the literature, but these variants employ aieffi
of combinatorial optimization techniques to efficientlyh@ optimization techniques and do not necessarily generalize
these variational problems. In this work, we reformulate tho arbitrary graphs. Yiet al. formulated the Mumford-Shah
Mumford-Shah functional on a graph in order to reap thénergy on a lattice and used a greedy algorithm for per-
benefits of combinatorial optimization to reduce the ditties  forming the boundary update. Similarly, the MRF formulatio
of speed and local minima associated with the small contogf Geman and Geman?§] (and later addressed explicitly
improvements obtained via traditional contour evolution.  py Mumford [¢7]) is commonly viewed as equivalent to a
An additional benefit of reformulating an energy in a disdiscrete formulation of the Mumford-Shah functional inhifg
crete, combinatorial setting is that such a generic fortraia of its convergence in the limit to the continuous Mumford-
may be applied without modification to general data analysishah model 7). Our contributions in this paper are to:
problems, such as point clusterings], mesh smoothing 1) Appeal to the well-established combinatorial analogues
(segmentation) 4] or space-variant vision/[/]. Even in the of differential operators to formulate our discrete vensiuf
context of Cartesian image processing, recent work has-exafe Mumford-Shah, yielding a different discrete instatitia
ined modified neighborhood structures to generate improvgfl the Mumford-Shah functional than what has previously
segmentation results{], [33]. Our combinatorial formulation appeared in the literature (particularly the smoothness)te
allows for a straightforward application of the MumfordeBh 2) Show that this discrete version of the Mumford-Shah
optimization in these scenarios. For example, the popular Ncan be optimized efficiently using combinatorial optimiaat
Means algorithm of 16] may simply be interpreted as thetools only if values of the reconstructed foreground inities
addition of non-local neighborhoods (graph edges) to taelyr are extended beyond the foreground region, 3) Propose a
with specific edge weights’f]. This perspective on the NL- method for extending these intensity values to the entire
Means algorithm allows us to directly apply our combinabri graph (domain), 4) Show that the resulting algorithm sthpng
Mumford-Shah algorithm to the graph defined by the ext@utperforms existing gradient descent-based level set opt
edges generated by NL-Means. In this manner, the gragiizations of the Mumford-Shah functional, 5) Show how to
construction and energy optimization may be separated ag)sply the combinatorial formulation of the Mumford-Shah
addressed independently. In SectidhB we demonstrate the functional to nontraditional problems such as point cliste
use of the graph formulation to perform point clustering &md and nonuniform image processing.
filter images defined on a space-variant data structure ddel |, this work, we begin in Sectiodl by reformulating

after a biological sampling of image space. . the Mumford-Shah functional on a graph and then showing
Graph based optimization techniques have been previouglyy to perform the optimization using known combinatorial
used as components in optimization methods for functiongfssthods. In Sectionll we perform several experiments to
formulated in continuous space. Boykov and Cremers sugggskpare the combinatorial optimization associated with ou
using a max-flow/min-cut step to assist in level set updatgg,p formulation to the traditional gradient descentelas
[10]. Zeng et al. [60] and El-Zehiry et al. [27] employ & |eyel setimplementation. Our experiments focus on theivela

max-flow/min-cut operation as aco.mponent pf their piecewigpeed of the two methods, as well as the convergence rate,
constant Mumford-Shah computations; we instead presentqgsiness to initialization, robustness to parameteingst

complete combinatorial reformulation and solution of thSnd the production of a lower-energy solution. In Section

more general piecewise smooth Mumford-Shah functiongl, o e show that the contour evolution produced via our

Likewise, graph methods have also been employed in thgmnpinatorial method is capable of non-local movement by

minimization of total variation for image filtering task&/], taking arbitrarily large steps between iterations. SectioB

[6]. . . L shows how to use our general formulation of the Mumford-
Traditional contour evolution optimizations pursue a corspap functional to analyze data on a non-lattice graphligina

tour update in the direction of steepest descent. Since HjssectionV/, we draw conclusions about the results of these

contour update represents a first variation of the Mumfor@Xperiments and suggest directions for future work.
Shah functional, the calculation of this update does natireq

knowledge of the values of the idealized foreground and
background functions (images) at locations distant from th

contour. In contrast, the graph formulation that we pursael$ Il. METHOD
us to a combinatorial optimization approach that is capable
taking arbitrarily large steps of the contour location. hder In this section, we first define the continuous piecewise

to take these large steps, it is necessary for us to addresssmooth Mumford-Shah model that we use. After this defi-
estimation of the foreground/background function values aition, we consider each of the three terms and formulate the
locations (pixels) distant from the contour. The neceskity combinatorial analogue of the piecewise smooth Mumford-
extending the foreground and background functions outsideShah functional. With these combinatorial analogues, e pr
their regions of evaluation, in the context of a global baanyd ceed to show how to perform an optimization of the variables
optimization, have been noted in the literatus€][ [13], [61], and then conclude this section with a summary of steps in the
[15]. Our method of performing this extension is detailed imalgorithm.
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A. Mumford-Shah formulation: Continuous and Combinato- of integration) and a cochain (function to be integrated).
rial Associating each pixel in our image with a node in the graph,

We begin by fixing our notation. &raph consists of a pair 1€ intégration over a collection of pixels (in sék < V)
G = (V, E) with vertices (nodes) € V andedgese € £ C may be represented by thé x 1 chain vectorr, where

V x V, with N = |V| and M = |E|. An edge,e, spanning 1 ifo,es
two vertices,v; andv;, is denoted by;;. A weighted graph "= otherwis;a ()
assigns a value to each edge callegegght. The weight of an

edge,e;;, is denoted byw(e;;) or w;; and is assumed here toThe other two variables i are cochains taking real values,
be nonnegative. Thdegreeof a vertex isd; = > w(e;;) for je., f; € R, ¢g; € R. Note also that the imag&is treated as a
all edgese;; incident onv;. The following will also assume vectorized, real-valued cochain existing on the nodese(g)x
that our graph is connected and undirected (i€;,= wj;). Both chains and cochains will be treated as column vectors.
An image may be associated with a graph by identifying eachThe first (data) term in1) concerns quantities associated
pixel with a node and defining an edge set to represent the logath pixels (i.e., intensities). We chose above to asseciat
neighborhood relationship of the pixels (e.g., a 4-corg@ctnodes with pixels, s@, f, andg must represent 0-cochains
lattice). (functions mapping nodes to real numbers). This designatio
Since the inception of the Mumford-Shah functional, then@atches the continuous conception of these quantitiesaer sc
have been several related notions of what constitthes fields. Since the data term ifi)(integrates over a set of the
Mumford-Shah functional. In this work, we follow the leveldomain for whichp, f and g are defined; must represent a
set literature to consider the piecewise smooth modé], [ 0-chain indicating a region of the domain. Putting together

[55], formulated as above observations, the analogue of the first term on a graph
is
T \2 NT N2
E(f,g,R)a(/(fp)er/ (gp)2>+ Evfogr)=r" (f=p)"+0=r) (g-p)" @)
r R In order to formulate the second term, recall that the

9 9 combinatorial analogue of the gradient operator is given by
: (/R VAT + ,/Q\R IVl ) +vI(R), (D) the node-edgéncidence matrix [40]

where(? represents the image domajhrepresents the smooth +1 if i =k,
foreground function,g is the smooth background function, Aoy = —1 if j=k, 4)
R is the region of the image comprising the foreground, 0  otherwise

p is the pixel intensity,I'(R) is the length of the contour

of region R, and a, u,v are free parameters. For ease dPf every vertexv, and edgee;;, where eacte;; has been

exposition, we assume that the image consists of graysc@igitrarily assigned an orientation. Consequently, we may

values only, although the formulation could easily be estezh Write the gradient off as the productdf. However, since

to color or multispectral images. Although the piecewisé;radients arevector functions (corresponding to cochains on

smooth Mumford-Shah model has proven useful images §§ges in the combinatorial setting) and the integral in the

which the objects are piecewise-smooth, other types ofcobjéecond term is performed over ssalar function (i.e., the

appearance (e.g., textured objects) are not well-modeyed M of the gradient at each point), we have to transfer the

this form of the Mumford-Shah functional. To simplify thegradient cochain associated with edges back to a scalaaitoch

parameter space (and notation) we assume that all three fgg0ciated with nodes. Such an operator may be represented

parameters are strictly positive and divided by the valug.of by the absolute value of the incidence matrix, although each

Consequently, we will omit the inclusion gfin the remaining €dge is now double counted, requiring a factor of one-half.

exposition. Similarly motivated models were considered byPecifically, the second term may be formulated as

Blake and Zisserman, who referred to the energy as the “weak L/ 7 or 9 T T 9

membrane model”q] and by the influential paper of Geman Ex(f.g9,7) = ) (7" (AT (Af)” + (1 =r)" [A]7 (Ag) ) .

and GemanZ]d]. A comprehensive exposition on the properties (5)

of this model was provided by Ambros al. [1]. Finally, the contour length term may be formulated on a
Our formulation of () on a graph employs the combi-9eneral graph by counting the number of edges spanning from

natorial analogues of continuous differential operatdes ( £t to R, whereR indicates the set complement &f Such a

justification and introduction to these combinatorial agales, Measure may be represented in matrix form as

see_[LZ], [4_0], [51]). Although c_ombmatorlal r_epresentatmns Es(f.g,7) = 17| Ar]. (6)

of differential operations are fairly well establishede tthal-

lenge in the graph reformulation of any particular energy (¢f our graph is a standard 4-connected lattice (i.e., a Bipoi

PDE) is to associate variables in the continuous formulatistencil), then §) produces the¢/; measure of the contour of

with representative combinatorial structures (pixelsgesj region R. If we view the graph as embedded ®" and

cycles, etc.) and, as in the continuous case, to producevigh to measure a Euclidean contour length, it was shown by

useful representation of a “contour”. Specifically, eadiegnal Boykov and Kolmogorov §] that a suitably weighted graph

may be considered as a pairing between a chain (domé&md corresponding incidence matrix) could instead by used
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in (6). However, since the Boykov-Kolmogorov constructiomodesv; and v;, there will be no contribution to the energy

was designed to produce a Euclidean contour length, we(7) from a gradient between these nodes. However, if any

recommend only using this construction in tery. For of the border nodes iR are connected to more than one

purposes of generality and clarity here, we will continue toode insideR (e.g., at a corner) then the solution iy will

use the samel in all terms. cause the border node to take the average value of the nodes
All three terms may now be recomposed to define theside R and this node will contribute to the energy i) (

combinatorial analogue of the piecewise smooth Mumford-is one-pixel reach across the boundary is a result of the

Shah model, i.e., combinatorial analogue of the gradient norm and is necgssar
, . ) to ensure optimizability of the energy irv)( but does not
E(f,9,R) =« (TT (f=p)+QQ—=7) (9—p) ) + empirically contribute in any significant way to the enerdy o

1/ o ) - ) . the final solution.

3 (7“ A" (Af)"+ (1 —7)" |A]" (Ag) ) +v17]Arl. (7)  we may follow the same steps as above to find the solution
ﬁér g. Specifically, define sef = R and Q* = {u;lif v; €

0

Given the above definition of the combinatorial analogue or Jey; s.t. v; € Q}, leading to a solution of

the Mumford-Shah functional, we now proceed to show h
to optimize the variableg, g andr. (2a diag(ro-) + Ab.diag (|Ag-|ro-) Ag-) go- =
2c0 diag(rQ* )pQ* . (12)

We can now address the optimization f given a fixed
0f‘and g. Noting that all three terms of7{ are submodular
linear functions ofr, we can solve for- as a max-flow/min-
cut computation 3g. The reduction to a max-flow/min-cut
computation may be more easily seen by writing the energy
i (7) in traditional summation form as

B. Optimization

We adopt the alternating optimization procedure comm
to Mumford-Shah optimization 2[J)], [55]. The alternating
optimization procedure first treats the current conteuras
fixed and then finds the optimal and g. Given anf and g,
the optimalr may then be found. We begin by considerin
the production of an optimaf andg from a fixed contoury-.

Before taking a partial derivative of7 with respect tof, ]
it is useful to rewrite the terms of7) involving f in matrix E(f,g,r) = Z ri | a(fi — _ri)2 + = Z (fi — fj)2 +

form, o 2 e
1
E(f,R) =a(f —p)" di —p)+= T AT diag (| Alr) Af. 1
Taking a partial derivative ofg) with respect tof yields " v
OF Z/Z|T‘7;7Tj|. (13)
aF = 2o diag(r) (f — p) + ATdiag (|A|r) Af.  (9) eij

_ . . In effect, the first and second terms describe unary terms
The diag(-) operator represents the diagonal matrix formegbnalizing data infidelity from the reconstructed image and

by placing the argument vector along the diagonal. Sinck bgjonsmoothness in the reconstructed image. The contouhleng
the first and second terms c_ﬁ)_(are positive semi-definite, the(third) term penalizes contour length and is written in term
zero of ) represents a minimum oB). Consequently, the of sirictly positive weights, producing a submodular egerg
optimal f given a contour satisfies that may be optimized effectively with a max-flow/min-cut
(2a diag(r) + AT diag (|AJr) A) f =2adiag(r)p. (10) _com_putation. Minimum cut cpmputations on graphs represent
ing images are very fast using the algorithm of Boykov and
Consider the seR* = {v;if v; € R or Je;; s.t. v; € R}  Kolmogorov P.
which includes all of the nodes iR as well as any nodes in  Unfortunately, use of a max-flow/min-cut computation to
R that are connected with an edgeRo From (L0) it is clear optimize (L3) requires knowledge off and g in the entire
that the nodes in the complement &f, R*, can take any domain. However, since the values ifi outside of R* and
value of f while satisfying (0). In other words, this part of the values ing outside of Q* make no contribution to the
does not contribute to the energy if) @nd therefore may be energy in {) we could useany solution for f and ¢ in
ignored. Consequently, the optimum valuesfofn R* may these regions without affecting the energy. Consequestipe

be found by solving regularization is necessary to assign these values bydirtgn
) o the known solutions foifr- andgg-, so that the optimization
(2o diag(rp-) + Ap.diag (|Ap-|rp-) Ar+) fre = in (13) can be performed.

2a diag(rg«)pr=. (11)

It is important to note that since the energy computation fp EXtension of the reconstructed image

(7) reaches across the boundary by one pixel to produce theéutside of regionR*, any values off will satisfy (10).
smoothness estimate, the optimum solution forincludes Consequently, this part of does not contribute to the com-
values at these pixels across the border. Since the systenputation of the energy in7§ and could simply be ignored if
(12) will generally forcex; = x; across the border separatinghe values were not necessary to produce an optimal boundary
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(a) Boundary (b) Foregroundf with extension (c) Backgroundg with extension

Fig. 1: Optimization of (L3) using max-flow requires specification of values for the reconstrict@gjround image functiorf in the region
outside the foreground regiorR. Using a Laplace equation regularizer obtains the values fand g for the entire image domain shown
above.

location via minimization of 13). In fact, the existing level therefore the resulting function may not be optimal at each
set literature that optimizes the contour via gradient desc step inside the active domain. This is not true of the two-
ignores the values of outside regionR, since the values of step approach both presented itt][and also used presently.
distant from the contour are inconsequential. However,un oZhaoet al. discusses the method of extending functions via a
combinatorial formulation, we desire to take a contour steéflamilton-Jacobi equation that is used in much of the previou
on the entire domain, regardless of the proximity of the nelevel set work {1]. Bressonet al. discuss the necessity for
contour to the previous contour. Consequently, we will need extensions, but leave out the details for their specificresits
produce a meaningfuf outside of regionR*. Although any method [L3].

choice of f outside of R* will have no impact on the energy, We may solve the Laplace equation on a general graph,
the solution forf within R* is uniquely determined relative given boundary conditions, by using the technique ®],[

to any boundary. Therefore, our approach will be to deteeminvhich we briefly review. Recall that the Laplacian matrix is
the optimalf within R* by solving (L1) and use this solution defined as
to generate arf outside of R* that may be used as guidance

. S d; if i =7,
for generating the next contour optimization. ‘ ) e .
) i ; o ) Lij = { —w;; if v; andv; are adjacent nodes (14)
An important assumption aboutis that it is a continuous .
0 otherwise

function at the contour. Therefore, in order to enforce max-
imum smoothness betweefinside R* and the extended and thatL = ATCA, for some diagonal matrixXC taking
outside of *, we propose to regularize the unknown part ahe edge weights along the diagonal. If we treat the solution
[ by constructing thef outside of region?* that satisfies the to (11), fz-, as fixed Dirichlet boundary conditions, we can
Laplace equation while treating thinside of R* (obtained decompose the Laplacian matrix into

from (10)) as Dirichlet boundary conditions. We apply the

same procedure for extendingoutside@*. Note, however, {%RT LB } , (15)

that other extensions gf and g are possible and may lead to R

improved performance. which allows us to solve the combinatorial Laplace equation
We pause briefly to discuss the relationship of our meth&y SOlving the system

of extension to those done previously. The method mentioned Ly fre = —B  fg-. (16)

here is most similar to that of Vese and Chan ing][

where they essentially discuss first solving the functighs In summary, the optimum fofz- and fz= may be produced
and ¢ inside their appropriate domains in order to minimiz&Y solving sparse, positive definite systems of linear eqoat
the functional, and then extending each of these functioff§ which many fast methods exist (se&7]).

outside of their respective domains by solving the Laplace Following the same steps as above, the optigaalis given
equation with Dirichlet boundary conditions on the contouPy solving the linear system

and Neumann boundary conditions on the image boundary. A o T
seemingly similar method of producing function extensions Lar9g== =B 9o~ (7

has been documented by Braet al. in [15 where they An example of thefr, fz, gr and gz computed for a given
compare various approximations to a single PDE containing boundary with this regularization method is shown in Figure
indicator function that can be solved to produce a meaningfu

function on the entire domain. While the PDE is still elliptic We conclude the section with observations about how our
in this method, when the single PDE is solved the values gfaph formulation compares with discretized contour etoiu

the function outside of the active domain have the potefuial approaches of the continuous energy. First, in contrast to
affect the values of the function inside the active domaimg athe standard continuous methods, at each iteration we are
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solving for a reconstructed image and contour thattmally the combinatorial formulation of the Mumford-Shah shares
minimize the Mumford-Shah energy, given a fixed contounuch in common. Specifically, in18), intensity priors are
(for the reconstruction computation) or a fixed reconstomct present (from the data term), the weights are submodular and
(for the contour computation). An important consequence tife optimum of {3) is obtained via a max-flow/min-cut com-
these globally optimal steps is thalt correct implementations putation. However, by examining the above list of ingretien
will produce an equivalent answer. Since the same answerfor Graph Cuts, one may also notice differences with the
is produced regardless of implementation, there is no neemmbinatorial Mumford-Shah. First, the edge weights are no
to choose any implementation parameters. For example, amgdified to reflect likely contour gradients. Second, in &ddi
linear system solver run to convergence will produce theesano the intensity priors,1(3) involves an additional unary term
answer to {1). Therefore, Gaussian elimination might bgenalizing the estimate of the normalized gradient near the
faster or slower than conjugate gradients, but both methqguigel (obtained via the smoothness term in the Mumford-Shah
will produce the same answer if run to convergence aifidnctional). Third, no hard constraints (seeds) are impdse
therefore there is no need to be concerned that implementattonstrain the foreground/background assignment of arglgix
choices will have an effect on thguality of the final solution. Fourth, there is no reconstructed image variable (ife.g)
Second, because our contour optimization is not performptesent in Graph Cuts. Finally, the solution df3) is just
via gradient descent on the contour location, the contoone iteration in the overall optimization of the Mumford-
update is capable of non-local movement to “snap” to the b&dhah functional. Although the contour solution df3) is
contour, even if initialized far away. This non-local movem optimal for each iteration, the overall energy minimizatiof
results in greater robustness to initialization, far fewter- the Mumford-Shah energy still produces a local minimum.
ations (translating to faster speed) and greater robustites It should be noted that certain extensions of the Graph Cuts
choices of weightings for the three terms in the Mumfordwork (e.g., GrabCuts4], [4€]) also utilize Graph Cuts as
Shah functional. Additionally, as shown in SectibhA, this a subroutine while re-estimating the intensity priors athea
non-local movement capability allows our graph formulatioiteration. However, unlike the Mumford-Shah formulatitinis
to jump over intervening structures of arbitrary size to findiork does not include a specific smoothness penalty term
a low-energy solution to the Mumford-Shah functional. Wer a reconstructed image, hard constraints are included and
note that similar properties (non-local movement, de@easthe edges are weighted by image gradients. Additionally, it
dependence on implementation parameters) have also beensbiould be noted that we are not arguing that the Mumford-
tained by recent continuous formulations that produce glotShah functional is better or worse than these other energy
optimization of the contour at each step?], [21]. minimization approaches, but rather that the Mumford-Shah
Although our graph formulation produces optimal solutionsodel is still heavily applied and that the optimization is
for each alternating step of the Mumford-Shah minimizatiourrently done using gradient descent on level set funstion
it is important to stress that there is no guarantee thatGiven the traditional successes of applying a minimization
global optimum will be obtained for the joint energy. Inof the Mumford-Shah energy and the recent successes of
fact, it is entirely unclear whether or not alternating @glbb Graph Cuts (and its derivatives), it is not surprising the t
energy minimization steps will produce a lower joint energglgorithms bear a strong relationship.
than a series of small alternating local energy minimizatio
steps: Th_erefore it is an empirical questio_n _to determinghvh Algorithm summary
optimization strategy produces a lower joint energy for rea
images. Both optimization strategies (graph and level aet)
empirically tested in Sectiofil against a battery of natural e .
images to better understand which optimization strategksvo 1) Initialize the functionsf, g and the contour.

The steps of the combinatorial Mumford-Shah algorithm are
therefore:

best on the joint energy in practice. 2) Solve the linear system irl{) for the optimumyfg-.
3) Solve the linear system i) for the extension off z«
D. Relationship to Graph Cuts to fr=-

The Graph Cuts algorithm for image segmentation and®) SOIve the linear system irif) for the optimumgq-.
denoising was first introduced iri ], [7]. This algorithm has ~ °) Solve the linear system iri{) for the extension 0fq-
been greatly extended since inception to where it is somewha 1o g5+ ) )
unclear what comprises “Graph Cuts”. However, all algongh ~ ©) Solve the max-flow/min-cut problem inLy for the
under the title “Graph Cuts” seem to have the following __ °Ptimum contour _ _ ,
qualities: 1) Defined on a (possibly directed) graph, 2) gsin 7) Repeat steps 2—6 until the contour location remains
submodular edge weights to reflect likely contour locatj@)s constant.

Possibiy inciuding an intensity prior assigning each piixei Fina”y, we make a few observations about this procedure:
foreground/background, 4) Possibly including hard caists 1) Traditional gradient descent-based level set impleazent
(seeds) to force pixels to be foreground or background, 5) Op  tions of the Mumford-Shah functional are not required

timization via a max-flow/min-cut computation, 6) Produees to perform steps 3 and 5 on the entire image domain,
global optimum of the desired energy. since the extensions ¢f andg far from the contour are
With the above definition of the term “Graph Cuts”, it is not pertinent to a gradient descent method. Although

possible to observe that the contour optimization B3) (in the inclusion of steps 3 and 5 are expected to double
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(a) Initial contour (b) Iteration 5 (c) Iteration 10 (d) Iteration 15 (e) Iteration 19 (final)

(f) Initial reconstruction (g) Iteration 5 (h) Iteration 10 (i) Iteration 15 (j) Iteration 19 (final)

Fig. 2: Demonstration of correctness that our combinatorial formulation atichization of the Mumford-Shah functional correctly recovers
the contours of a piecewise smooth image and reconstructs the piecenasthsapproximation accordingly. Top: Contour evolution from
initialization to stabilization. Blue contours indicate contour location. Bottom: &mwnding reconstruction of the piecewise smooth estimate
of the image, given a contour.

2)

3)

4)

5)

6)

7)

the computation of the function estimation step, the no notion of sub-pixel accuracy available. Additionally,
drastic reduction in the number of iterations observed  approximation of a Euclidean length of the contour via

with our graph formulation (see Sectioh) more than a large number of edges requires significant memory,
compensates for these additional computations. especially in 3D.
The same steps apply to solving the Mumford-Shah As a demonstration of correctness, Fig@relemonstrates

functional in any dimension — The only difference bethat our combinatorial formulation and optimization agpio
tween dimensions is in the underlying lattice employegtely segments a piecewise smooth image of 8 x 256
(e.g., a 6-connected lattice compared to a 4-connectgistels.

lattice).

Although our primary focus is on the contour location ll. RESULTS

(e.g., a segmentation), it is important to note that a The positives and negatives of Mumford-Shah segmentation
piecewise smooth approximation to the image is alstnd reconstruction have been well-discussed in the litezat
obtained via the solution tgf and g. Consequently, Our reformulation of the Mumford-Shah functional on a graph
our algorithm applies equally to image/signal denoising intended to permit usage of the arsenal of combinatorial
problems. optimization methods to minimize the Mumford-Shah energy
Due to the generality of the formulation, the samgore quickly and to find lower-energy solutions. Conse-
algorithm can be applied to the segmentation, clusteringuently, our experiments focus on answering the following
denoising, etc. of any data defined on a graph. Examplgsestions about the relative merits of traditional gratlien
of the application of this algorithm to the more generalescent-based level set implementations of the MumfoahSh
setting is given in SectioiV-B. energy and the combinatorial optimization applied to oapgr
Since global optima are obtained at each step, no iformulation of the Mumford-Shah functional:

plementation parameters (e.g., step size) are necessary) Speed: Which procedure finds a solution with fewer
in our graph formulation. iterations? What is the relative cost per iteration? What
Since global optima are obtained at each step (relative to s the dependence of performance on resolution?

the choice of extension functions), the energy obtained2) |nitialization: Which procedure is more robust to initial-
after each minimization can never increase. In practice  jzation of the contour?

we have always observed rapid convergence. 3) Parameters: Which procedure is more robust to the
In the context of image processing in which the graph choice of parameter settings?

is a lattice embedded int®* or R*, combinatorial  4) Energy minimization: Which procedure produces solu-
optimization does have some drawbacks with respect tijons with lower energy?

to the level set methods.'SpecificaIIy, since the region's-ro answer the first three questions, we begin with a toy
are parameterized by binary sets of nodes, there jigage of a black square on a white background. Such a trivial
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(a) Toy image (b) Box (c) Crown (d) Squares

Fig. 3: Toy image to compare the speed of traditional contour evolution implememtaiib proposed combinatorial optimization of the
Mumford-Shah functional presented in this paper. The contours)(mdesate three different initializations used to generate results presented
in Tablel.

image was chosen since 1) There is a clear energy minimuangd speed of the level set function evolution.

2) A relatively smooth energy landscape, 3) The same answeOur implementation of max-flow/min-cut was taken directly
for a wide range of parameters, 4) A clear stopping criteridnrom the online code of Vladimir Kolmogorov. In order to
(i.e., when the contour matches the square). For thesengasproduce a comparable comparison between the level set opti-
we can perform controlled experiments to probe the answenszation and our graph framework in these 2D experiments,
to the questions posed above about the relative performame choose to calculate contour length of the cut with respect
of traditional contour evolution implementations (via dient to a Euclidean measure i)(by using the weighted incidence
descent on level sets) and our new graph formulation of theatrix of the graph corresponding to the construction of
Mumford-Shah energy. The last question regarding relati®oykov and Kolmogorov §] with an approximation to the
energy of the solutions is addressed by running both thehgrapuclidean distance represented by a neighborhood corthecte
and level set optimizations on a series of 50 natural imagegth a distance of two pixels.

comparing their resulting energies.

We compared the combinatorial optimization of our grapf Speed and initialization
formulation method with an efficient gradient descent-dase Our first experiment examines the relative speed of tradi-
narrow-band level set implementation of the continuous fational level set implementations and our new graph formula-
mulation similar to the one presented iR5] although the tion for the box image using various image resolutions and
original piecewise-smooth level set implementation was- prcontour initializations. In this experiment, we createdeth
sented in P0]. Great care was taken to ensure the correctndsdializations — A larger square surrounding the targetase,
and efficiency of the level set implementation so that a fad a an erratic “crown”-shaped initialization centered on tasget
accurate comparison could be made between the two methatgiare and small squares tiled throughout the image. These
In [55], the curve evolution is written as an initial valuethree initializations are displayed in Figu® For each of
problem on a locally evolving geometric contour, and notras ghese initializations, we measured the number of iteration
initial value problem on a smoothed Heaviside function as nequired to converge the level set via gradient descent and
[20. In our implementation of the level set method howevegraph methods to the known optimum solution and the average
we do not initialize with the piecewise constant solution dsme taken to produce one contour update for each method
done in p5]. The method employed alternating optimizationsvhen run on an Intel Xeon 2.40GHz processor with 1GB
of the contour evolution and of the smooth functions as iof RAM. The time per iteration and time for a boundary
the graph method and as has been used in all Mumford-Shaddate may not be multiplied directly to produce a total
implementations of which we are aware. For efficiency, thexecution time since each method additionally requires an
level set function was computed and stored only in a narramage reconstruction update. However, this function updat
band around the contour, in which we maintained the suis- computed in roughly the same manner (assuming a finite
pixel position of the contour. Force extensions were commutdifferences discretization in the level set method) forhbot
on pixels which neighbored the contour as illustrated4i#]l.] algorithms, although our combinatorial method requireisdw
When computing the level set function update, the spatia$ much time for the function update since the level set ngdetho
derivatives associated with the curvature term were coetputdoes not require that the foreground/background functimns
with central differences, and the spatial derivatives eissed extended. If the function computations are much larger than
with the data terms were computed with the numerical scheitiie boundary updates then the relative execution times will
detailed in [4] to ensure that the viscosity solution wade close the to ratio of iterations. However, if the function
obtained for the portion of the level set evolution that is eomputations are much less than the boundary updates, then
Hamilton-Jacobi equation. At each contour evolution step, the relative execution times will be close to the ratio of
updated with an explicit forward-Euler scheme in which ththe number of iterations for each method multiplied by the
maximally stable time step was taken to ensure both stabilboundary update time for each method. Since the linearrsyste
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[ Initialization/Resolution] LS iterations [ LS mean iter. time] GR iterations|[ GR mean iter. time]

Box (64 x 64) 41 0.002s 2 0.0064s
Box (128 x 128) 126 0.0057s 2 0.0211s
Box (256 x 256) 140 0.0199s 2 0.0838s
Crown (64 x 64) 262 0.0023s 4 0.0091s

Crown (128x 128) 1393 0.0061s 3 0.0239s
Crown (256 x 256) 110 0.0245s 4 0.1019s
Squares (64x 64) 294 0.0072s 3 0.0094s
Squares (128« 128) 940 0.0112s 3 0.0295s
Squares (256« 256) 540 0.0624s 3 0.1177s

TABLE I: Results of experiment comparing speed of convergence for let/€LSg solver and our graph (GR) formulation. Note: 1) The
parameter settings were choserbist favor the level set method in every experiment, 2) Exactly the same initializations were given to both
algorithms, 3) The size and spacing of the squares initialization was ctiodemor the LS method. Time reported “per iteration” refers
to update of the contour location, since computation of the reconstructegtimahe same in both methods (although this computation is
effectively doubled for GR since the inside/outside functions are extbbdgond their respective region). Note that while the displayed
number of level set iterations may seem particularly high, it is importanote that the initializations in these cases are very distant from
the desired contour.

Initialization 1 Initialization 2
iters. | sec./iter.
Level Set | 1523 | 0.0073

Graph 7 0.1176

iters. | sec.liter.
Level Set| 312 0.0061
Graph 4 0.0616

Initialization 3

iters. | sec./iter.

Level Set | 1920 | 0.0101
Graph 5 0.1187

Final segmentation

Fig. 4: Comparison of number of iterations and speed of iteration for diffeirétilizations on ultrasound image. Parameters were chosen
to best benefit the level set method.

solver is not different for these two methods (on a Cartesidéion, regardless of the resolution or contour initialipati We

grid), we simply report both the total number of iteratiomsla remind the reader that the parameters were chosen to favor

the boundary update time. the level set method. Choosing the parameters to favor our
In this experiment, the parameters in the energy functiorfgioposed graph method would have resulted in a stronger

were chosen to favor the level set method as much as possibigparity in favor of the graph method. In the next section,

as determined via manual adjustment. Tabldisplays the we detail the results of an experiment intended to measere th

results of this experiment. The time reported “per iteratio robustness of the two approaches to parameter choice.

in this table refers to the update of the contour locationgesi A third experiment was performed on a real ultrasound

the computation of the reconstructed image is the same n béhage in the same manner as the first. An initialization was

methods (although this computation is effectively doukiled introduced inside the target object, outside the objectthad

our graph method since the inside/outside functions needégatically inside and outside the object. The results imge

be extended beyond their region). Therefore, even thoug e@f number of iterations and speed of each iteration are shown

iteration of our graph method is slightly more expensiventhdn Figure 4 and correspond well with the results from our

an iteration of the level set method, the improvement of 1synthetic experiment. Once again, the parameters of thester

3 orders of magnitude in the number of iterations causes tilethe Mumford-Shah energy were chosen to best favor the

total runtime of the graph method to be much less than thatle¥el set method and both methods converged to roughly the

the level set method. Additionally, the graph method cogesr same contour.

within 2—4 iterations regardless of the resolution, ifi@tion

or parameters. Note that while the displayed number of levd| Parameter robustness

set iterations may seem particularly high, itis importamoéte  The choices of the term parameters 1) ¢an make drastic

that the initializations in these cases are very distamhftoe differences in the optimal contour and reconstruction poed

final contour. by minimizing the Mumford-Shah functional. Even if the
These experiments suggest that the combinatorial optimizgptimal contour and reconstruction are the same for differe

tion of the Mumford-Shah functional produces the correchoices of parameters, the parameter choices could affect

solution much faster than the traditional level set optamizthe speed of convergence for a given initialization. In this
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[ Optimization algorithm[ Mean iterations| Median iterations] Iteration number standard deviatign

Level set 1614.40 1520 391.80
Graph 2 2 0

TABLE Il: Comparison of robustness to the three term parametets.ibging the (128« 128) toy image above with the “box” initialization,

for 50 trials we randomly chose the three term parameters from independiform distributions on the intervél, 1) and ran both the level

set and combinatorial optimizations of the MSF. A randomly generatedfgerameters was rejected and re-run if the target square was
not the minimum of the MSF. In all cases, combinatorial optimization predube target square in two iterations, regardless of parameters.
Note that the number of iterations reported for the level set method in Taide much less than the averages reported here due to the fact
that all of the results reported inused parameters that were hand-selected to favor the level sergemve.

experiment, we examine the robustness of both the level s@itroscopy, 1 fMRI, and 2 angiography images). For each
and graph formulations of the Mumford-Shah energy to thmage, initializations and parameters were selected tdym®
choice of parameters in terms of the number of iteratiors contour (for at least one algorithm) that was semantically
needed to reach the optimum solution. Once again, we emploganingful. Cluster plots of the final graph MS energy vs. the
the toy example of Figur8® . For this experiment, we usedfinal level set MS energy are shown in Figuidor these 50
the most simple, “box”, initialization of Figur@ since we images. In most cases, optimization of our graph formufatio
expect that both algorithms will reach the target contour f@f the Mumford-Shah functional produced solutions with an
all parameter choices. We ran fifty iterations in which thequal or lower energy and sometimes produced solutions
parameters for each of the three terms ®f Wwere chosen with dramatically lower energy. In a few cases, the level set
independently from a uniform distribution within the intat formulation produced slightly lower energy (shown in Figur
of zero to one and then both the level set and graph algorith@¥
were applied to minimize the Mumford-Shah energy. If the The issue of computing the Mumford-Shah energy for
target square was not the optimum solution for the randomly given solution is complicated by the Euclidean bound-
generated parameters, this parameter set was rejecteth@ndyfy jength term. The measurement of Euclidean length
trial re-run. After each parameter set, the number of it@nat o 5 pixelated segmentation was addressed separately by
and average time per iteration were recorded. Boykov/Kolmogorov and Chan/Vese. Although it was shown
The results of this experiment are displayed in Table {nat in the limit, both of these measures produce the true
We see that the rate of convergence of the level set methedjigean boundary length, for a given finite segmentation
is highly dependent on the parameters, while the rate @foy may differ in their estimates. Since our combinatorial
convergence for the graph method is completely independegityjation explicitly employs the Boykov/Kolmogorov mea
of the parameter set. Both algorithms exhibited indepeceleryre and the level set implementation implicitly employs th
of the per iteration time on the parameter set. Empiricéllg, chan/\ese measure, we were concerned that this difference
results of this experiment concur with our experience thet t, gyclidean length measurements might bias the compara-
convergence rate, and solution achieved, of the graph methpe solutions produced by each algorithm. Consequenty, w
is much less sensitive to the parameter settings than tle¢ 'eé’omputed the Mumford-Shah energy using both measures to
set method. Note '_that the number of iterations reportedi®r tgqe i any discrepancy would affect our valuation of which
level set method in Tablé was much less than the averaggiimization method produced a lower energy. A scatter plot
reported in Tablell due to the fact that all of the resultSghoying the relative Mumford-Shah energies of the solution
reported in Tableé used parameters that were hand-selected L‘jging the Chan/Vese measurement is given in Figarerhile
favor the level set convergence. the energies of the segmentations are recomputed using the
Boykov/Kolmogorov measurement of boundary length and are
C. Energy minimization comparison displayed in FigureSb. However, as can be seen from the
Beyond speed, our purpose in introducing combinatorifigures, the difference between thes.e two measures is_n1inirr_1a
optimization techniques for solving the Mumford-Shah fun@nd does not change the conclusion that the combinatorial
tional is to produce solutions with a lower energy than tHePtimization produces consistently lower energies tham th
solutions obtained by conventional gradient descentebadgVel Set optimization.
level set techniques. In order to compare solutions in termsin Fig. 6 we show select images whose segmentations
of minimal energy, we must address natural images for whidiffer in semantically meaningful ways. Note the more globa
the energy landscape is nontrivial. In this section we apphature of the segmentations produced by the combinatorial
both the graph-based and level set algorithms to naturgitimization method. This is a direct result of allowing the
images using the same initialization/parameters to englyi graph method to make globally optimal cuts at each iteration
compare the Mumford-Shah energies obtained by the finghile the level set method restricts the contour to progngss
solutions. by gradient descent. We also show two of the four images
This experiment was performed on 50 different naturalhere the level set optimization produced a segmentatitim wi
images, of which 11 were from the Berkeley image databadewer energy than the graph based optimizatipand6k. We
12 were miscellaneous photographs, and 27 were varicdaedieve that the lower-energy solution found by the lewal-s
medical images (12 ultrasound, 4 CT, 5 MRI, 3 digitamethod in these instances could have also been obtaine& by th
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Fig. 5: Cluster plots of final Mumford-Shah function energies comparinggnerinimization methods over 50 images. Eaeh’ fepresents

an individual image showing the energy of graph solution vs. the eradrtgrel set solution. Note that the only difference between the two
plots is that5ais measured with the approximation to Euclidean boundary length provigé&hban and Veselp] and 5b is measured with
the approximation to Euclidean boundary length provided by Boykov asitch&gorov [].

graph method in this case if we had made a different choiEggure 7 illustrates three situations that are able to be seg-
of extension functions. mented correctly by the proposed combinatorial optimarati
of the Mumford-Shah functional, but where standard gradien
descent methods fail.
The piecewise smooth MSF may drive non-local movement

In this section, we address two desirable aspects of awa insufficient smoothness, permitting the penetratioraiof
combinatorial formulation that are not available with a-traannulus with a center comprised of pure noise. The final
ditional formulation and level set optimization. First, wesegmentation shown in Figui®is not achievable by gradient
demonstrate the ability of a graph formulation to exhibitlescent of the contour.
non-local movement, since the optimal contour is found atIn the millstone image, we are able to achieve correct
each iteration, there is no limitation that the contour movwsegmentation of the inner ring instantly. We would like to
to a nearby location. Consequently, the segmentation maydvaw attention to the method by which Chan and Vesd |
found faster (by taking larger steps) but, more importarlig were able to determine inner boundaries of objects. Théyabil
formulation also permits the contour to “jump over” spatialo segment this inner boundary was due to the mollified
obstacles that would prevent the contour from finding a loweaviside function that was used to approximate a region
energy. Second, we give an example of how our combinatoriatiicator function. Indeed, one could argue that there ydwa
formulation permits the application of Mumford-Shah metho exists some heavy-tailed mollified Delta function that coul
to data associated with an abstract graph. Specifically, sge achieve the segmentation of the inner ring for an annulus of
the Mumford-Shah functional to perform filtering (piecesvisfixed thickness. However, such heavy-tailed Delta funstion
reconstruction) of image data defined on a space-variaat daltimately sacrifice segmentation accuracy and thus, org mu
structure intended to model the sampling scheme of the humaodify the mollification kernel during the optimization if
retina and on a point clustering problem. high accuracy is desired. Such an implementation trick is
completely obviated by using our proposed method which
works for annuli of arbitrary thickness with no such tempgra
sacrifice in accuracy.

A key advantage of the contour optimization in our graph The work of [L3] shows the ability to naturally attain
reformulation of the Mumford-Shah energy is that it enablesich inner boundaries due to their method of total varia-
movement to the optimal location at each iteration. For thign optimization using a modified Mumford-Shah functianal
reason, our method is able to move to arbitrary image logatiocSome level of non-local movement in solving the Mumford-
as predicted by the solution td3) depending on the currentShah functional with level set methods have been achieved
estimate of the piecewise smooth reconstructions. Theomotin [57] using additive operator splitting>5g], however they
of the contour is thusot limited to local movements as are only illustrated the technique for the piecewise constasec
traditional optimizations of the contour by gradient degce Specifically, they did not present the idea of extending the

IV. ADDITIONAL CAPABILITIES OF THE FORMULATION

A. Non-local movement
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LS: 3.47 LS: 2.44 LS: 2.56 LS: 2.82 LS: 0.70
GR: 254 GR: 2.15 GR: 2.03 GR: 0.99 GR: 0.57 GR: 0.71
(a) Boat (b) Brain (c) Insect (d) Cells (e) Ultrasound (f) Blood vessel
Initial Initial Initial Initial Initial

w o VY b

LS: 0.78 LS: 1.20 LS: 1.98
GR: 0.56 GR: 1.08 GR: 1.55 GR: 0.89 GR: 0.90
(g) Breast (h) Gaelic (i) House (j) Beach (k) Snowy field

Fig. 6: Select images that show substantial or interesting differences betweetnatlitional level set optimization and our proposed
combinatorial optimization of the piecewise smooth Mumford-Shah funatidiop Row: Original image with contour initialization, Middle
Row: Piecewise smooth reconstruction from the level set method is showiddle row, Bottom Row: Piecewise smooth reconstruction
from the graph method is shown on bottom row. The correspondingjieseare displayed above each reconstruction. Most images yield
lower energies with the graph method, but imaggand 6k are two examples that exhibited slightly lower energy with the LS method.
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Fig. 7: Non-local movement: Since the contour optimization step in our graphulation of the Mumford-Shah energy is not performed by
gradient descent, the final contour is permitted to jump to a location distamttfre initial contour location. While this effect is sometimes
achieved in the literature by the use of mollified region indicator functionsnete that the mollifier support must be wider than the width
of the annulus for such an approach to succeed.

approximation functions as in the proposed method. Additiofiltering are important. In order to apply our combinatofi@t
ally, the work of Hinterniiller has the ability for non-local mulation of the Mumford-Shah function, all that is necegsar
movement 6. is to have a series of finite data points for which it is possibl

Finally, we illustrate that distant (non-overlapping)tiai- to define a neighborhood relationship (edge set) and suth tha
izations are not a problem for the combinatorial method ag theach data point has an associated value (or vector of values)
are for methods that evolve the contour via gradient descehberefore, by formulating the Mumford-Shah functional on a
Such a poor initialization could occur via automatic irliia- general graph, our algorithm has straightforward appboat
tion of outlier image data. Regardless of the distance of the clustering points in a feature space or mesh smoothing and
object to the initialized contour, our contour optimizatiees segmentation (seef] for more examples from this point of
able to quickly find such salient object boundaries. view).

It should be pointed out that some applications may indeedin this section, we choose two different application areas
prefer local evolution of a contour and that global minimizafor demonstrating our general formulation of the Mumford-
tion of the functional is not always desirable. In this wonkg Shah energy. The first application is to a piecewise smooth
are interested only in the minimization of the energy. Dueeconstruction of a non-uniformly sampled image and the
to the minimization procedure, the proposed combinatorigécond application is to point clustering.
formulation progresses the contour in ways that are optahal Non-uniformly sampled images may occur in applications
each iteration. If non-local movement is considered umdesdue to the image acquisition device (e.g., ultrasound). Ad-
able for some segmentation tasks (e.g., perhaps the owfsidéitionally, such sampling of images has also been heavily
the annulus is the target segmentation), it is possiblesimice studied because of the connection to the sampling of bicédbgi
the movement of the contour to a fixed distance from thetinas 7], [3], [31]. These biological retinas may exhibit
present contour. This restriction may be easily accomptisha wide range of sampling3[], but the primate sampling
by fixing ther values in the contour optimization that are morstructure may be described as consisting of a foveal pit of
than a predetermined distange, from the present contour. high density sampling in the center of visual space with
Using this device, the contour would not change its locatiaan exponential reduction in sampling toward the periphery.
pastp pixels of its location at the previous iteration. Using the idealized sampling of the human retina provided

The term “non-local movement” is used in this paper tm the free Graph Analysis Toolbox3f], we imported a
represent the ability of the contour to make arbitrarilygtar standard Cartesian image to this foveal structure and ojam
jumps in space. This goal is different from that in the recetite Mumford-Shah functional to produce a piecewise-smooth
work on Sobolev Active ContourssP], in which the authors reconstruction of the data. The results are displayed inrEig
desired to change the notion of what it means to be a “locd}’ Note that the only change necessary to employ this foveal
deformation on the space of curves. Thus, the authorsih [ structure was to change the node and edge set of the graph to
still use gradient descent, only with a different notion ofsth match the non-uniformly sampled image (given by the Graph
the gradient is defined. The Sobolev Inner product as prapogsnalysis Toolbox, in this case), which then provides a néw
in [52] does not allow for the non-local movement exhibitedperator. Given thisi operator, the procedure in SectitrE
in Fig. 7. Simply stated, our method is not a gradient descentay be applied exactly as described to produce the minimum
approach, and seeks to minimize the energy using an entirefythe combinatorial formulation of the Mumford-Shah energ
different scheme than gradient descent. Our combinatorial formulation of the Mumford-Shah energy

applies not only to image data, but rather to any function
assigning values to the graph nodes (a 0-cochain). Conse-
B. Murrford-Shah on a general graph quently, we may take the coordinates in feature space of a

Image processing techniques are typically applied tustering problem and directly apply our algorithm to penfi
Cartesian-sampled images in 2D or 3D with a local neiglthe clustering. In Figureéd we generated two overlapping
borhood structure. However, may other kinds of data exigbint clouds with 2D features (x and y coordinates) and con-
in which the same tasks of clustering (i.e., segmentation) wected the nodes with a Delaunay triangulation. We may treat
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(a) Cartesian image (b) Foveal structure (graph) (c) Foveal image (d) Piecewise smooth recon.

Fig. 8: Formulating the Mumford-Shah on a general graph permits usage mmiformly sampled images that was not available with
previous formulations/optimizations. Here, we present the piecewisetemeconstruction of an image that is resampled in accordance with
the foveal sampling exhibited by the human retira][ [31].

2 ) f\'/, ’
(a) Clustering problem (b) Clustering (boundary) obtained (c) Reconstructed point coordinates

Fig. 9: Our graph formulation of the Mumford-Shah energy allows nonstahdpplications such as clustering or mesh smoothing. In this
example, the x and y coordinates of each point were used in place of égeimtensities as the function to be reconstructed. The clustering
obtained is shown in (b) where points in different clusters are color@dregreen and the edges spanning the boundary are colored light
blue. In (c) the reconstructed (smoothed) coordinates for each a@rmshown.

the foreground/background coordinates as independeldarsca Although our measured comparisons with the traditional
functions, which may be thought of as adding a second detel set method were performed in 2D, our formulation
of data/smoothness terms int@).( The clustering (boundary) applies equally to 3D lattices. Additionally, in strong t@st
and reconstructed coordinates for foreground and backgrouo traditional methods of formulation and optimization bét
are shown in Figur®. Note that this problem is intended toMumford-Shah functional, we demonstrated that our method
demonstrate the generality of our formulation rather than tpermits application on arbitrary graph structures, inirigd
difficulty of this particular clustering problem. non-uniformly sampled images. Future work includes:

1) Introduction of multiple labels in the contour computa-
tion to address triple points and other junctions for which
hierarchical methods and multiphase level sets have been

In this work, we began by reformulating the classical  employed b3, [41], [56]. _

Mumford-Shah energy functional in terms of analogous dif- 2) Exploration of other choices for extending tffeand

V. CONCLUSION

ferential operators on graphs. With this reformulation, ave g reconstructions beyond their region of calculation,
able to apply the established arsenal of combinatorial-opti ~ Other than the Laplace equation employed here. It is
mization techniques for producing reconstruction and @ant the view of the authors that the existence of global
updates. optimization methods for the contour location highlight
Our experiments indicate a dramatic improvement of our ~ the importance of the extension choice, which has not
graph-formulated optimization over traditional gradied®- been addressed as an issue of fundamental importance

scent approaches for contour evolution. This improvement N the literature.

is in terms of speed, robustness to initialization, robessn  Finally, we hope that this work has illustrated the idea that
to parameter settings and in the production of a soluti@n reformulation of traditional (continuous) PDE approache
representing a lower Mumford-Shah energy. Additionallg win terms of their analogous differential operators on gsaph
employ a global combinatorial optimization technique tisat (combinatorial operators) can permit the use of powerful
not based on gradient descent to solve our graph formulatioombinatorial optimization techniques that may more glyick
of the Mumford-Shah functional, which permits non-localind lower energy solutions when compared to their standard
movement of the contour to find low energy solutions. level set counterparts. Although our primary motivatiom fo
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reformulating traditionally continuous energies in terwfs [22]
combinatorial operators is to provide faster, simpler, dow
energy solutions capable of non-local movement of confours
it is important that a graph-based formulation also permils3]
application of the same techniques to more abstract domains
such as data clustering ], mesh processing:fl] and space-
variant vision {7]. [24]
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