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Abstract. Graph-based algorithms have become increasingly popular for med-
ical image segmentation. The fundamental process for each of these algorithms
is to use the image content to generate a set of weights for the graph and then
set conditions for an optimal partition of the graph with respect to these weights.
To date, the heuristics used for generating the weighted graphs from image in-
tensities have largely been ignored, while the primary focus of attention has been
on the details of providing the partitioning conditions. In this paper we empiri-
cally study the effects of graph connectivity and weighting function on the quality
of the segmentation results. To control for algorithm-specific effects, we employ
both the Graph Cuts and Random Walker algorithms in our experiments.

1 Introduction

Graph-based algorithms have become well-established tools for general image segmen-
tation problems [[1}2/3]. The procedure underlying these algorithms is to: 1) Identify
each pixel with a node of the graph, 2) Assign an arbitrary edge set (connectivity), 3)
Use the image content to establish a set of weights on the edges, 4) Establish a par-
titioning criterion that may be optimized to produce a segmentation. Distinctions in
the fourth step separate different graph-based segmentation algorithms. Although some
attention has been paid to the first step (by associating nodes with presegmented re-
gions), the second and third steps have been almost entirely ignored. Specifically, these
steps have typically employed the same set of heuristics. Our goal in this work is to
empirically study these common heuristics and determine which, if any, work best on
real data.

The seeded user interface employed by many of the graph algorithms supports in-
teractive segmentation for which the segmentation target is chosen by the user and not
known a priori by the algorithm designer. In these cases, a small number of intensity-
based edge weighting functions seem to reoccur throughout very different segmenta-
tion algorithms. Since the same weighting functions consistently reappear throughout
the graph-based segmentation literature, there appears to be an unwritten assumption
that the utility of these weighting functions is independent of the specific algorithm in
use. This assumption implies that the results of testing different weighting functions
with any graph-based segmentation algorithm will support valid conclusions about the
weighting function that apply to all graph-based algorithms.

Edge connectivities of the image lattice have been treated similarly in the graph-
based literature. In most cases, a 6-connected, 10-connected or 26-connected lattice
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have been employed, without much discussion of why one choice was made over an-
other. A common feeling in the community seems to be that higher levels of connec-
tivity do, in fact, improve the segmentation results. In rare cases, such as the Graph
Cuts algorithm, this assertion is also predicted theoretically [4]. Unfortunately, the ad-
ditional overhead of more edges usually results in a decrease of performance speed and
therefore less-connected edge topologies are sometimes preferred.

In this work, we empirically study the effects of weighting function and graph
topology on the performance of segmentation algorithms. We make the simplifying
assumption that the performance effects of weighting function and graph topology are
independent. Although this assumption is not likely to be strictly true, we are unaware
of any claim in the literature that the weighting functions (or even weighting function
parameters) should be paired with particular edge topologies. Since the assignments of
weightings/topologies reoccur between different graph-based segmentation algorithms,
it seems to be assumed that the weighting/topology choice is independent of the specific
graph-based algorithm. Although this assumption suggests that the choice of graph-
based algorithm should not bias the findings on the utility of a particular weighting
function or graph topology, we employ two graph-based algorithms to control for any
algorithm-specific bias toward a particular weighting function or edge connectivity. In
this work, we have chosen to employ the Graph Cuts [1]] and Random Walker segmen-
tation algorithms [2] to perform our tests.

2 Method

We obtained 62 3D medical datasets containing a single segmentation target that were
manually segmented by a clinical practitioner. Each volume was also given manually-
placed foreground and background seeds by the same clinical practitioner that provided
the manual segmentation. The data contained a range of segmentation targets including
tumors, lymph nodes, cysts and other lesions. The data was acquired using different
Siemens computed tomography (CT) scanners, with different reconstruction kernels
and the clinical input (ground truth and seeds) was given by different clinical partners.
Therefore, our results should not be biased by the details of a particular acquisition
protocol or clinical individual. The datasets we used for segmentation were typically
cropped from larger data acquisitions and ranged in size from roughly 40 x 40 x 40 to
128 x 128 x 128. Most of the datasets had different numbers of voxels in each dimension
(i.e., they were not cubes) and had a greater spacing between axial slices than within
the slice. All of the data acquisitions were axial scans. The XY-plane was chosen to
correspond to an axial slice.

Data from CT acquisitions is sometimes considered to be easier to work with, due to
the reliability of the output intensities, than other imaging modalities (e.g., ultrasound,
magnetic resonance). However, our purpose in this work is not to examine the absolute
performance of an algorithm to the segmentation of these targets. Instead, our goal is
to compare the relative segmentations obtained through the use of different weighting
functions and graph topologies in otherwise controlled conditions. The choice to use
this series of CT data was made primarily due to the availability of this data in sufficient
quantity to produce meaningful results.
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Due to the good segmentation performance and widespread usage, we chose to em-
ploy the Graph Cuts algorithm of [1] and the Random Walker segmentation algorithm
of [2]. These algorithms are representative examples of the set of modern, graph-based
segmentation algorithms that input foreground/background seeds and output a label for
each voxel. In order to assign a label to an unseeded voxel, the Graph Cuts algorithm
computes the minimum cut separating the foreground from background seeds using
a max-flow/min-cut computation [5]. In contrast, the Random Walker algorithm com-
putes the probability that a random walker initiating its walk at each voxel first arrives
at a foreground seed before arriving at a background seed. If that probability is larger
than 0.5, then the voxel is labeled as foreground (otherwise it is labeled as background).
It was shown in [2] that these probabilities could be efficiently computed by solving a
sparse system of linear equations. In these experiments, the system of linear equations
was solved iteratively using the preconditioned conjugate gradient method with a Jacobi
preconditioner and solved to the same level for all examples.

Evaluation of segmentation quality with respect to ground truth is a delicate prob-
lem. In this study, we chose to employ the volume overlap and the normalized volume
difference [6]. The volume overlap is generally more meaningful as a metric of seg-
mentation quality, since it takes into account the relative position of the ground truth
and the computed segmentation.

2.1 Weighting Functions

Weighting functions have been used to map intensity gradients to graph weights since
at least as early as the influential work of Perona and Malik on anisotropic diffusion
for image smoothing [[7]], and earlier image reconstruction efforts [8]. When introduc-
ing anisotropic diffusion, the authors suggested two functions used to map intensity
changes to diffusion constants. These two functions were subsequently studied and de-
termined to reflect differing models of image formation [9]]. Since this time, these two
functions have been employed in the Normalized Cuts algorithm [[10] and subsequent
graph-based segmentation algorithms [[1J2)3/11]. Although these functions have gener-
ally yielded good segmentation performance, we are aware of no attempt to carefully
compare the quality of results obtained with these functions. Since natural images are
known to contain significant structure (and medical images presumably even more), it
is not unreasonable to think that one of these weighting functions better models how to
convert the image inputs into graph weights. The weighting functions initially proposed
in [[7]] but subsequently utilized throughout the segmentation literature are

2
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where g(v;) indicates the image intensity at voxel v; and 3 represents a free parameter.
The function dist(-) accounts for differences in spacing and edge length and is computed
as the Euclidean distance between voxels, taking into account voxel spacing.

The algorithms under consideration contain additional information in the form of
the intensity distribution at the seeds. A natural idea is to make an assumption that the
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Fig. 1. Graph Cuts: Empirical comparison of weighting functions over a range of (3 values using
the same connectivity. Marker positions indicate measured data points. Blue/dashed line with cir-
cles: Gaussian function (1), Green/dash-dot line with crosses: Reciprocal function @), Red/solid
line with diamonds: Histogram-based function (3). Top row: Comparison of mean, median and
standard deviation for mask overlap measure. Bottom row: Comparison of mean, median and
standard deviation for normalized volume difference.

intensities in the foreground voxels are all drawn from the same intensity distribution.
This intensity distribution may be estimated using a Parzen window on the histogram of
intensities contained in the foreground seeds. Given this estimation of the foreground
intensities, we can look for boundaries of the foreground object with the function

exp(—B(H (g(vi)) — H(g(v;)))?), A3)

Histograrn Wi = W
is Uj

where H (g(v;)) denotes the probability that image intensity g(v;) at voxel v; is drawn
from the foreground object.

For each weighting function, a range of s was tested. In order to remove any bias
for the absolute intensities of the image, the gradients were normalized by the largest
gradient (in each dataset) to lie in the interval [0, 1] before applying the above weighting
functions. Due to numerical precision or choice of parameter, it might be possible to
assign a weight to be exactly zero. To account for this possibility, a small additive
constant (equal to 1e~®) was added to each weight. All experiments comparing the
weighting functions were conducted using a 6-connected lattice.

2.2 Graph Topology
In 3D computer vision, the standard graph connectivities are: 6-connected, 10-connected
and 26-connected. The edge set of each connectivity is defined as
6 — connected : E = {i,j] ||C(v;) — C(v;)|| <1}, 4)
26 — connected :  E = {i,j| ||C(v;) — C(v;)|| < V3}, 6)



Weights and Topology: A Study of the Effects of Graph Construction 157

Weighting comparison of mean mask overiap Weighting comparison of median mask overlap Weighting comparison of mask overiap standard deviation
02,

0.19
018
017

016

0.5

014
ma‘/eoe
~oeo--

012

Reciprocal weighting
Gaussian weightn

ng 011
& Histogram weighting

200 250 300 350 400 o s
Beta

Weighting comparison of mean volume difference Weighting comparison of median volume difference Weighting comparison of volume difference standard deviation
4

o

Fig. 2. Random Walker: Empirical comparison of weighting functions over a range of /3 values
using the same connectivity. Marker positions indicate measured data points. Blue/dashed line
with circles: Gaussian function (), Green/dash-dot line with crosses: Reciprocal function (@),
Red/solid line with diamonds: Histogram-based function (3). Top row: Comparison of mean,
median and standard deviation for mask overlap measure. Bottom row: Comparison of mean,
median and standard deviation for normalized volume difference.

where ||-|| is used to denote the standard Euclidean norm and C' (v;) maps voxel v; to its
coordinates in 3D. The 10-connected case has a somewhat more complicated definition,
since it gives preferential treatment to the within-slice dimensions (taken here to be the
XY-plane). We may define a 10-connected lattice to be

10 — connected : E = {3, j| [|C(v;) — C(v;)|| <1} U
{i, 4] 1IC(vi) = Cv)l| £ V2,¥C(v): = Clv;):}. (6)

We make the assumption that edge connectivity and weighting function are independent
design choices, i.e., if a particular connectivity improves the results, we assume that the
performance increase will persist even if another weighting function is employed. Since
the histogram-based weighting function (B) performed better than those based purely
on image intensity (see Section [3), the same histogram-based weighting function was
employed across all connectivity experiments.

3 Results

3.1 Weighting Functions

Our comparison of graph weighting functions is displayed in Figure [[l for Graph Cuts
and in Figure[2/for the Random Walker algorithm. These Figures plot the mean, median
and standard deviation values of the two segmentation measures across (3 values.
Graph Cuts responded to a different parameter range for 3 in the two intensity-based
weighting functions than the Random Walker algorithm. For better display of Figure [1}
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Fig. 3. Graph Cuts: Empirical comparison of graph connectivities over a range of (3 values using
the same weighting function. Marker positions indicate measured data points. Red/solid line with
diamonds: 6-connected lattice. Blue/dashed line with circles: 10-connected lattice, Green/dash-
dot line with crosses: 26-connected lattice. Top row: Comparison of mean, median and standard
deviation for mask overlap measure. Bottom row: Comparison of mean, median and standard
deviation for normalized volume difference.

the § value used in the Gaussian function is 10x the number shown on the axis, and the
(3 value used for the Reciprocal function is 100x the axis value.

Despite some differences in the behavior of both algorithms in the presence of dif-
ferent weighting functions, the overall behavior response is similar. Not surprisingly,
the histogram-based weighting function outperforms both of the weighting functions
based on intensity difference in both algorithms. However, the standard deviations of
the histogram-based results were higher than the standard deviations from the intensity-
based weighting functions for Random Walker, although the standard deviations across
all three weighting functions were similar for Graph Cuts. All of the weighting func-
tions appear to take a single peak at a certain 3 value, although the location of this peak
is function-dependent. The comparison of the Gaussian and Reciprocal weighting func-
tions, both based purely on intensity differences, is revealing. Although the Gaussian
weighting function appears to be more prevalent in recent graph-based segmentation lit-
erature, the Reciprocal weighting function appears to outperform the Gaussian weight-
ing function in two respects. For both algorithms (although more dramatically for Graph
Cuts), the Reciprocal weighting function achieves an absolute higher performance with
respect to both measures and a substantially lower standard deviation with respect to the
volume difference measure. Additionally, the performance of the Gaussian weighting
function behaves more erratically than the Reciprocal weighting function with respect
to changes in 3. Moreover, the peak performance of the Gaussian weighting function
corresponds to a narrow range of [ values, while the peak performance of the Recip-
rocal weighting function persists over a much broader range of § values. This finding
suggests that a designer must be more selective with their choice of 3 when using the
Gaussian weighting function than when employing the Reciprocal weighting function.
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Fig. 4. Random Walker: Empirical comparison of graph connectivities over a range of 3 values
using the same weighting function. Marker positions indicate measured data points. Red/solid
line with diamonds: 6-connected lattice. Blue/dashed line with circles: 10-connected lattice,
Green/dash-dot line with crosses: 26-connected lattice. Top row: Comparison of mean, median
and standard deviation for mask overlap measure. Bottom row: Comparison of mean, median and
standard deviation for normalized volume difference.

The intensity-based weighting functions were outperformed by the histogram-based
weighting function. The form of the histogram-based function was the same as the
Gaussian weighting function, except that differences in “foreground probability” were
used rather than the raw intensities. It is notable that the response of the histogram-
based function and the Gaussian function with respect to (3 followed a similar evolution,
except that the histogram-based function produced consistently better performance.

3.2 Graph Topology

The segmentation performance with respect to graph topology followed a similar pat-
tern with both graph-based algorithms. Overall, the connectivity level seemed to have a
stronger effect on the Graph Cuts results than the Random Walker results.

Conventional wisdom about graph-based algorithms tends to support the notion that
more edges (stronger connectivity) produce better results. Figure [4] illustrates that this
notion is not necessarily correct. Of the three graph topologies, the 10-connected graph
appears to exhibit inferior performance to both the 6-connected and 26-connected
graphs. One explanation for this phenomenon is that the asymmetry of the 10-connected
lattice (i.e., preferential treatment of the XY-plane) introduced a negative bias into its
performance. One might assume that it would be appropriate to include more edges
on the within-slice plane, due to anisotropic voxel spacing. However, introducing more
edges within-slice further reduces the percentage of between-slice edges, which may be
responsible for the negative effect.

The 26-connected lattice gave the best performance of all three graph topologies.
Use of a more extensive topology leading to better performance of graph algorithms
has been previously predicted in the literature for Graph Cuts [4], although the effect
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seems to be similar (albeit not as dramatic) for the Random Walker algorithm. Although
the peak § value for the 6-connected and 10-connected lattices were roughly equal,
the peak § value for the 26-connected lattice was larger. A possible explanation for
this phenomenon is given by the fact that gradient normalization was performed over
all edges. Since the between-slice diagonal edges present in the 26-connected lattice
would be expected to be greater than the other gradients along the other edges, it is
not unexpected that a larger § value would be required in the 26-connected case. This
explanation suggests controlling for this phenomenon by using the same normalization
for each dataset over all graph connectivities.

4 Conclusion

Graph algorithms have become very popular for 3D medical image segmentation. Al-
though the action of each algorithm is different, the same procedures are consistently
used to assign graph connectivity and edge weighting. Since these procedures persist
across algorithms, there is an implicit assumption in the segmentation community that
the algorithms respond similarly to the design specifications of the graph construction.
In this work, differences in graph construction were controlled for algorithm-specific
effects by employing both the Graph Cuts and Random Walker algorithms.

With respect to different graph weighting functions, it was found that basing the
weights on differences in a probability density obtained from the foreground seeds was
generally superior to weighting functions based solely on intensity gradients. This find-
ing is not overly surprising, given that more information is being used to build the
weight structure. However, it was more surprising to find that the Reciprocal weighting
function, which has been employed less in recent years, outperforms the more popular
Gaussian weighting function in terms of both absolute performance achieved and sta-
bility. This phenomenon was observed with both segmentation algorithms used in the
study. Since the Reciprocal weighting function outperformed the Gaussian weighting
function, it is possible that it would be more effective in the future to base the form of
the histogram-based function on the Reciprocal weighting function.

Although different connectivities have been employed in 3D graph construction, lit-
tle attention had been previously paid to the effects of topology choice. It has been
previously predicted for the Graph Cuts algorithm that higher-order connectivities pro-
duce better algorithm performance [4]. Our study confirms this prediction and shows
a similar response behavior for the Random Walker algorithm, but with a diminished
influence of topology. Specifically, our study comparing graph construction confirms
that 26-connected graphs do exhibit better performance than either 6-connected or 10-
connected graphs. More surprising is that the 10-connected lattice performed worse
than either the 6-connected or the 26-connected lattice. A possible explanation is that
the asymmetry of the 10-connected lattice causes an unintended bias in the results.

Our experiments suggest that the best algorithm performance may be gained by using
a 26-connected lattice and histogram-based weighting. If histograms are not available
(or unreliable, due to small samples), the Reciprocal weighting function outperforms
the Gaussian weighting function in both quality and stability.

There is much future work to be done on this topic. Three major questions remain:
1) Do these results persist with other data modalities? 2) Are better, general-purpose,
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graph connectivities and weighting functions possible? This paper offers the first look
at empirically evaluating the effects of graph construction on algorithm performance.
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