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Abstract proaches to user interaction require explicit formuladioh

the object boundary, it can sometimes be dif cult to extend

Interactive segmentation is often performed on imagesthem to higher dimension or more abstract problems like
that have been stored on disk (e.g., a medical image serverdata clustering. After the advent of the Graph Cuts algo-
for some time prior to user interaction. We propose to use rithm [2], a “scribble” interface has recently become popu-
this time to perform an of ine precomputation of the seg- lar in which a user marks some pixels (voxels) as belong-
mentation prior to user interaction that signi cantly de- ing to the object foreground and others as belonging to the
creases the amount of user time necessary to produce a segabject background (known aged$. Using this partial la-
mentation. Knowing how to effectively precompute the seg-beling (which is much less than the number of pixels), the
mentation prior to user interaction is dif cult, since a use  remaining pixels are accordingly labeled. Since the user
may choose to guide the segmentation algorithm to segmeninteraction involves labeling a few data points, these meth
any object (or multiple objects) in the image. Consequently ods extend without modi cation to higher dimensions and
precomputation performed prior to user interaction must more abstract clustering scenarios. Following the success
be performed without any knowledge of the user interac- of the Graph Cuts segmentation method, several other al-
tion. Speci cally, we show that one may precompute severalgorithms have been developed that employ the same user
eigenvectors of the weighted Laplacian matrix of a graph interface, but differ in the procedure for generating a com-
and use this information to produce a linear-time approxi- plete pixel labeling from the seeds [L5]. Despite the pop-
mation of the Random Walker segmentation algorithm, evenularity of these methods for image segmentation, the size of
without knowing where the foreground/background seedshigh-resolution images or medical volumes is such that the
will be placed. Finally, we also show that this procedure runtime can be prohibitive for employing these methods in
may be interpreted as a seeded (interactive) Normalizedan interactive fashion.

Cuts algorithm. In this paper we propose to shift the computational bur-
den of an interactive algorithm to afine procedure that
may be performed before any user interaction has taken

1. Introduction place. An ofine procedure is attractive since, in many

. ) ] cases, there is substantial time between the acquisition of

Interactive methods for image segmentation have beenpe image and the segmentation of that image by a user. In
gaining popularity in recent years because they permit theparticular, medical images (volumes) often exist for days
targeted extraction of objects of interest with minimaldjui o weeks on a data server before a user interacts with the
ance. The method of user i.nt.eraction has traQiFic_JnaIIynake image. Precomputation via an of ine procedure is dif -
one of two forms: 1) Providing a complete initial bound- ¢yt to formulate since it is unknown where the user will
ary near the desired boundary that is evolved to the correctehgose to place seeds. In Sectiywe show that precom-
segmentation, 2) Selecting pieces of the desired bounda%uting a small number of eigenvectors of the graph Lapla-
which are then connected automatically. The rst approach cjan matrix is suf cient to allow for a good approximation

to user interaction is typically employed by active contour qf the solution to the interactive Random Walker image seg-

or level set methods, while the second approach to usermentation algorithmd], regardless of where the seeds are

interaction has been employed by intelligent scissoes/liv placed. Given this precomputation of a few eigenvectors of
wire [14, 7] and fast marchingd]. Since both of these ap-  the graph Laplacian matrix, the interactive, online segmen
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valuable than the time that a user spends during interactionthe algorithm correctly converges to the Random Walker
For example, in a hospital setting, of ine precomputation segmentation as more eigenvectors are used, and that our
may occur over long periods of time while image data is approximation preserves the quality segmentation proper-
stored on a data server. Additionally, several application ties of the Random Walker algorithm. Sectibdraws con-
(e.g., radiation therapy planning) require the online segm  clusions and discusses future work.

tation of many objects in the same volume. However, the

hourly rate of physicians and technicians is so high that 2. Method

any time that can be saved during their usage of software ) ) ) .

to segment or otherwise interact with image data results in VW& begin by xing our notation. Agraph consists of a
substantial cost savings. Despite the opportunity for ef - Pair G = (V;E) with vertices (nodesjv 2 V andedges
ciency gains, the precomputation of quantities that enanc © 2 E V.V, with N = jVj andM = jEj. An

the speed of user interaction is a relatively unexploreittop ©d9e.e, spanning two vertices; andy; , is denoted by; .

in computer vision. In contrast, precomputation has been”® Weighted graph assigns a value to each edge called a
utilized with great effectiveness in the context of quegyin  Weight. The weight of an edge; , is denoted byv(e; ) or

a shortest path on a static network (e.g., a road network)Wi and is assuged here to be nonnegative. dégreeof

[10, 13). To date, these algorithms utilizing precomputa- & VETtex isqi = w(ej ) for all edgese; i”Cid?”t onv;.
tion produce the fastest shortest path queries of any known' he foIIo_wmg W||_| also assume thaF our graph is connec_ted
approach. and undirected (i.ew; = w;i ). Animage may be associ-

ated with a graph by identifying each pixel with a node and
de ning an edge set to represent the local neighborhood re-
lationship of the pixels (e.g., a 4-connected lattice).

The Random Walker segmentation algorithm@fdom-
putes the probability, for each pixel, that a random walker
leaving that pixel will rst arrive at a foreground seed be-
fore arriving at a background seed. It was showrdirtlat
these probabilities may be calculated analytically by solv
ing a linear system of equations with the graph Laplacian
matrix. TheLaplacian matrix is de ned as

In computer vision, traditional approaches to increas-
ing the efciency of interactive image segmentation al-
gorithms have focused primarily on multiresolution ap-
proaches rather than performing an of ine computation. For
example, several multiresolution methods have been pro-
posed to increase the ef ciency of Graph Cuts,[19)] that
can reduce the computation time to near linear complexity.
However, these approaches have three primary dif culties:
1) Using a very low resolution results in poor segmenta-
tions, while using a ner resolution may still be computa- 3
tionally expensive (e.g., the lowest resolutiéd ( 64 64) >d
used by [1] still required roughly 10 seconds to produce a
segmentation), 2) Thin objects disappear at lower resolu- )
tion, 3) Special handling is required to prevent nearby seed 0 otherwise
from being merged into the same region at lower resolution.
In contrast, our approach to increase the ef ciency of an
interactive segmentation method via precomputation gield

n interactive algorithm th r n the full r i .
an interactive algorithm that operates on the full resofut compute the probabilities;, that a random walker leaving

with a linear time complexity. . . L .
o ] ) nodey; arrives at a node iWg before arriving at a node in
The key computation in the Normalized Cuts algorithm Vg by solving

[19] is_to prodl_Jce e_igenvectors of_the normalized graph Luxy = BXs: @)
Laplacian matrix. Since we are using eigenvectors of the

graph Laplacian matrix to approximate the Random Walker The variablexy represents the set of probabilities corre-
solution, it is natural to look for an interpretation of our SPonding to unseeded nodess is the set of probabili-
procedure in terms of the Normalized Cuts algorithm. We ties corresponding to seeded nodes (i.e., '1" for foregcoun
nd that our use of the Laplacian eigenvectors may be in- nNodes and ‘0’ for background nodes) and; B correspond
terpreted as introducing an interactive seeding intefifstoe {0 the matrix decomposition df

Normalized Cuts. Ls B

The structure of the paper is as follows: In Sectione L= g7 Ly ()
review the Random Walker algorithm and show how we can
use precomputed eigenvectors to produce an approximate Ourgoalisto nd an approximate solutionxg without
solution, even in the absence of knowing the location of the knowingVe and Vg . The approach to this problem will
US_er input seeds. We then develop the qonneCtion between 1Added 6/12/08 by LG: Thanks to Yue Wu for pointing out tha} (
this precomputed Random Walker algorithm and Normal- shouid read , xy, =
ized Cuts. In Sectio® we give results demonstrating that published.

ifi=j;
L(:j)=_ wy ifvi andy; are adjacent nodes (1)

whereL (i;] ) is indexed by verticeg; andy; .
Given a set of foreground seedg; , and background
seedsVg, whereVE \ Vg = ;;Vs = VE [ Vg, we can
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be to observe that multiplying with x (containing values  x with (6) and then normalize the computedo lie between

corresponding to the seeds) will produce sdmee. zero and one in order to get the random walker probabilities

Lx = f- @ computed fromZ).

' In the more typical use case of more than a single fore-
Then, if we perform an eigenvector decompositior. of ground and background seed being input, the authors are
o unaware of any known method for determinihgvithout
Q Q' x=f ®) knowing the variable in advance. Consequently, we now
we can compute up to a constant from present a method for approximatingn constant time (for
a xed number of seeds) with the precomputed eigenvectors

x = Ef; 6 inQ.

whereE is the pseudoinverse bf equalinge = Q  1QT We begin by noting that application &f to both sides of

in which (1 ;1) = 0. The reason thafl ;1) = 0 is (4) results in
because, for a connected graphhas a single eigenvalue
corresponding to zero and the corresponding eigenvector is
constant f]. However, sincd " 1 = 0, by virtue of @), we
can ignore the zero eigenvalue and constant eigenvector i
(6), since this entry will contribute nothing ta Due to the
constant vector nullspace bf, this procedure for forming
x in (6) is correct to a constant value. The issue of how to
determine this constant will be addressed later.

In order to limit the computational burden, storage and

I gg x=Ef =Q 'Q'f; )

whereg is the eigenvector of corresponding to the zero

rlaigenvalue. We can decomposeinto [fs;fy] (using
“MATLAB notation”), corresponding to the seeded and un-
seeded nodes, and note tlgt = 0. Sincefy = 0, our
primary interest is in calculatinfs, from which we can
nd x. Inorderto ndf, we decomposg into

time complexity of our online algorithm, we can de ne a Es R
K -approximation tox as E= RT E, : (10)
— 1AT ¢
X = Q kQel: " Note that
in which K is the number of eigenvectors used to produce RT=Qy 'QI; (11)

an approximation tx. If K = N thenxx = X, uptoa _ )

constant. Clearly, fromg), the most effective eigenvectors Which means thak can be approximated by the computed
to use will be those that correspond to the smallest eigen-€/génvectors comprising.

vectors. To avoid notational clutter we will assume for the ~ From @) and @) we know that

remainder of the exposition that soidehas been xed and

write all the variables without thi subscripts. Note that, Lsxs + Bxy = fs; (12)
for a constankK and knownf , the approximation ok de- Xy + guglxu = R'fs; (13)
scribed in ) is computed in time that is linear in the num-

ber of nodes (pixels). Taking the approach of solving(- which combine to form

lows us to perform our precomputation of the eigenvectors

in advance of knowing the seed locations, since the seed | BRT fs=Llxs Bgug)xuy: (14)
locations only serve to produce a differdntvector. The

primary question we face in the next section is how to know Let

what thef vector will be for an input set of seed locations. P=1 BRT: (15)

In order to ndfs, we need to solve the linear system of
. equations de ned by1(4) which is of orderjSj. We may
If the foreground and background seed sets consist ofhandle the unknowry on the RHS by replacing it with the

2.1. Determination of the right hand side

just a single node each, i.Vej = jVaj = 1 then, for  single unknown = gxy. Now, in order to solvei4) for
Vi 2 Ve andvp 2 Vg ; is known to be [] fs, we decomposes = f*  f~and solve
f 2 ']‘:' = E . P = Lsxs; (16)
P = ifi = b;
> ® Pf = Bgy: (17)

0 otherwise

where is the effective conductance between nodeand ~ Note that, by de nition ofg,
vy [1]. Therefore, when a single foreground and back-
ground seed are input, itis suf cient to treat 1, compute 0=g'lx=g'f=g" * f: (18)
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Figure 1. lllustration of problems with two approaches to seeded clusterspmectral coordinates with multiple seeds. (a) Example graph
— Two nodes are seeded with the “x' label (foreground) and two nadeseeded with the “triangle’ label. The issue is to decide the label
of the node marked with a question mark (the unlabeled node). The edgeecting the unlabeled node to the triangle labels have unit
weight, while the edge connecting the unlabeled node to the “x' label hasitvkeamd the edge connecting the two “x' labeled nodes has
weight % (b) Consider labeling the unlabeled node by assigning it the label of tkestlseed (in spectral space)klE= 1+ , then
the unlabeled node takes the X' label, even though this labeling givesoptimial Normalized Cuts value of the partition. (c) Consider
labeling the unlabeled node by assigning it the label of the seed group wétveaage spectral coordinate closer to the unlabeled node. If
k = 1000, the unlabeled node is erroneously labeled “triangle’, even though ibisgiyrconnected to an "x' seed.

Therefore, we may solve for the unknowrby computing where | indicates the image (volume) intensity at
voxelv; .
g'f . . .
= gTifJ (19) 2. Build the Laplacian matrix, of (1).

, 3. ComputeK eigenvectors ok, Q.
Givenf g, we may compute froml(3) that

Ef cient computation of the eigenvectors &f has been
xy=R'fs gu; (20) well-studied in the Normalized Cuts literatursd] g].

Given user-placed seeds, the “online” procedure is:
representing the approximate random walker probabilities

which may be thresholded at 0.5 in order to produce a nal 1+ USing the precomputeg, geneTrate & -estimate oP
segmentationZ?3). In our experience, an excellent approx- in (15) using theK -estimateR " of (11).
imation ofx may be obtained for even a smill (see Sec- 2. Solve (6) and (L7) with theK -estimatecP.
tion 3). However, even a small error in the computation of

can lead to an inaccurate post-thresholded segmentation. 3. Calculate from (19).
Therefore, we have adopted the procedure of choosing the
threshold o that produces the partition with the best Nor-
malized Cuts value. We note that, depending on the number 5. Threshold to produce the partition with the best Nor-
of eigenvectors used in the approximation, it may be pos- malized Cuts value.
sible that the thres_holded segmentation_ results i_n a SmallThe most computationally intense step in the “online” pro-
number of nodes disconnected from their respective Seedst:edure is the solution oflf) and (L7). However, if the

Lnrrfgﬁ)?zgases’ a connected component procedure could bﬁumber of seeds is constant, this step requires constamt tim

(for a given image resolution). Solving a full (i.e., non-
sparse) set of equations for a matrix obtained from 500
seeds (i.e., having siZ0 500) via LU decomposition re-
The algorithm has two parts: 1) An “of ine” algorithm  quires roughly 0.04s in MATLAB on a Pentium 4 (2.8GHz)
that has no knowledge of the seeds that the user will usewith 1GB of RAM. Note that any seeds for which all of
to segment an object, 2) An “online” algorithm that inputs the neighboring nodes are also seeds need not be used in
seeds from a user and nds the segmentation. (16) and (L7), since the correspondirfg; entries are zero.
The “of ine” procedure: Therefore, for a constant number of seeds and eigenvectors,

, . . the online procedure has a complexity that is linear in the
1. Input an image and compute edge weights, accordlngnumber of nodes.

toe.qg.,

4. Generatey from (20).

2.2. Algorithm summary

5 2.3. Relationship to Normalized Cuts
w; = exp (I; ) forfvi;wo?2e; (21)
The above procedure for approximating the Random
2Added 6/12/08 by LG: Thanks to Yue Wu for pointing out thag)( Walker solution by precomputing eigenvectors of the Lap|a_

ir . . . ! . . . .
should read = 3. Textin the body of paper reproduced as published. cian matrix can also be interpreted as an interactive versio
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a) Origina eig eig

40 eig
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Figure 2. Since our precomputation method produces an approximatioa Random Walker image segmentation algorithm, we want to
know how many eigenvectors are necessary to precompute in ordet goqyality segmentation. Foreground seeds are given in green,
background seeds in blue and the segmentation boundary is outlined iMagdow: Segmentation result with the use of 5, 20, 40, 60,
80 and 100 eigenvectors. The Random Walker segmentation is on thght(equivalent to using N eigenvectors). Bottom row: The
potential function corresponding to each of the segmentations, usiggegsively more eigenvectors.

of the Normalized Cuts algorithm §]. To see this connec-
tion, recall that the Normalized Cuts method is used to nd

a two-way partition of a graph by thresholding the second
smallest generalized eigenvector associated with the-prob

lem

Ly = Dy; (22)

rij is an indicator vector taking values

8

21 if i = k;
Fij (k)= S 1 Ifj = k;

0 otherwise

(25)

The inclusion of ! in the de nition of distance Z4)

wherey is the generalized eigenvector associating one valueis the key to the connection with the Random Walker algo-

with each node, is the eigenvalue anB is a diagonal
matrix such thabD (i;i) = d.

Although the Normalized Cut method traditionally em-
ploys only a single (generalized) eigenvector to bipantiti

rithm (in [18], Shi and Malik perform clustering of the spec-
tral coordinates of the nodes without weighting the spec-
tral coordinates with their corresponding eigenvalues). B
including  * in the de nition of distance, we can inter-

a graph (corresponding to the smallest nonzero eigenvalue)pret 24) as equivalent to theffective resistancgviewing

Shi and Malik also suggest employingka-means algo-
rithm in the coordinate space de ned by the “coordinates”

the graph as a linear circuit where weights are equivalent to
conductances) between two nodes. The effective resistance

assigned to each node in successive eigenvectors. Such cds also proportional to theommute timef a random walk

ordinates are sometimes referred tgpsctral coordinates
and have previously been used for clustering (e3j), In

on the weighted graph from node to vj. The commute
time measures the expected number of steps that a random

the Normalized Cuts interpretation of our method, the spec-walker would take to pass from nostieto v; and then back
tral coordinates are used to de ne a distance measure, frongain fromy; tov;. The commute time has become a pop-
which the distance from each node to the seeds may beular quantity for graph embedding (dimensionality reduc-
computed and then partitioned according to which seed hagion), graph matching and unsupervised clustering [ 6].

shorter distance. Speci cally, consider the case of twe sin
gle seedsVr = vi; Vs = vu. We may de ne the desired
partition as

Foreground = fv;j dist(v;; vg) < dist(vi;Vvg)g;

23

Background = fv;j dist(vi;vg)  dist(vi;Vg)g; 3)
where we de ne

dist(vi;vi)=r{ Y YTry; (24)

Y is the matrix of all generalized eigenvectors, taking col-
umni asy;, !is adiagonal matrix with( i;i) = i and

To see the connection between the distance in spectral
space de ned byZ44) and commute time, de ne theor-
malizedLaplacian matrix as

C=D ZLD z; (26)
with corresponding eigenvector decomposition
C=Q Q': (27)

The eigenvectorsQ, are related to the generalized eigen-
vectors described byp)

Y=D zQ: (28)



(a) Original (b) Random Walker (c) Approx. RW (40 eigs) (d) NCuts

Figure 3. The diagonal line example 6l [ Foreground seeds are given in green, background seeds iarmiibe segmentation boundary

is outlined in red. The ability of both the Random Walker and the Normalized &gtsithms to correctly handle this image suggests
that the two methods are related. The automatic Normalized Cuts resulbtedsed after the third cut (i.e., the NCuts algorithm initially
segments the disconnected black lines). Although a relatively small nuofilpgecomputed eigenvectors are used to approximate the
Random Walker solution, the ability of the algorithm to segment objects with Wweakdaries is preserved.

Therefore, we may rewrit&2d) in terms of the eigenvectors The rst (minimum) approach produces poor segmenta-
of C as tions because a node might be labeled background if the
node has a shorter distance to a single, slightly closer-back
dist(vi;v;) = r{ D zQ Q"D %rij = ground seed, even if the node has only a slightly more dis-
Iy tant relationship with several foreground seeds. Thisasitu
X 1 FgL pqL . (29) tion is illustrated in Figurd.(b). Even though the unlabeled
K di d ' node is very close to two background seeds, the minimum

approach would assign the node to the foreground because

which equals the effective resistance between two nodedt is closer to a single foreground seed. As shown in the
and is proportional to the commute time betwegandy; gure, such a rule would result in a partition with a sub-
[17]. It has been shown that the Random Walker algorithm optimal Normalized Cut value. Therefore, it seems that the
of [9] is equivalent to nding the smallest effective resis- Correcttreatment of multiple seeds is to simultaneoudly ta
tance between each pixel and the foreground seeds (considhto account all of the foreground/background seeds.
ered as merged into a single node) and the background seeds
(similarly merged). When using & -approximation to the
Random Walker potentials, the summation #8)(occurs
overK eigenvectors instead of.

In the more realistic situation of multiple seeds, the

The second (averaging) approach also produces poor
segmentations, but for different reasons. In this approach
the average distances are unduly biased by outlier seeds tha
i ) X X . are at a great distance (and possibly included by a user to
method in Sectior?.1 is equivalent to treating all fore- o 44e45 dif culties in the segmentation in other regions of
ground seeds as a single node and all background seeds gg, image). A succinct example of this problem is given

a s.ingle node. .In t_he context of the distance function de- by Figurel(c). Even though the unlabeled node is nearly
scribed above, it might seem more natural to adopt anothery,jiyajent with the foreground seed (due to the near-ie nit

approach to treating multiple seeds. Speci cally, two othe \ eighf) the presence of a distant foreground seed causes
approaches for treating multiple foreground/background i, njaheled seed to be labeled background. Using this
seeds appear obvious. The rst approach is to assign the.,ngiryction the Normalized Cut value of this partition can

node,vi 2 Vy, to foreground (background) if the dis- o 1aqe arbitrarily poor for the averaging approach by in-
tance between the node is smaller to a foreground (back-

creasing the value d.

ground) seed than to any background (foreground) seed,

i.e., Foreground = fvjj 9 vy 2 Vg st:dist(vi;vi) <

dist(vi;vp) 8Vvp 2 Vgg. The second approach is to as- Using the approach of merging the nodes corresponding
sign the unseeded node to foreground if the average distancéo all foreground seeds and all background seeds that is im-
between the node and all foreground seeds is smaller thamplicit in Section2.1produces the cutin the graph of Figure
the average distance between the node and all backgrounaith the lowest Normalized Cut value. Due to this connec-
seeds, i.e.Foreground = fv;j average (distlvi;v;)) < tion between the precomputed Random Walker algorithm
average (distlvi; vp)) ;8 v 2 Vg;vp 2 Vgg. Unfortu- and a seeded version of Normalized Cuts, we suggest cut-
nately, both of these approaches have serious drawbackgjng the value of the approximated potential function at the
which we now illustrate. value producing the best Normalized Cut value.



Figure 4. Several examples of our fast approximate Random Wallegra@reegmentation algorithm. Foreground seeds are given in green,
background seeds in blue and the segmentation boundary is outlined. ifFoeceach group, the left image is the original, then the
standard Random Walker segmentation, our fast approximation Ravddiker algorithm using 40—80 eigenvectors and the (automatic)
Normalized Cut segmentation. In our algorithm, the majority of the computétie., production of eigenvectors) may be precomputed
(without knowing the seed locations), making the “online” runtime fast.

2.4. Generalization of results How fast does the online computation run? 3) Are impor-

tant properties of the full Random Walker segmentation,

The development here for using precomputed eigenvec- ) ;
: : . such as weak boundary detection and quality segmenta-
tors to approximately solve a linear system generalizes be-

yond the solution of4). Speci cally, if the matrix has a sin- tions, preserved?

gle zero eigenvalue arfd, = 0, then the procedure above In order to address the rst question, we segmented the
can be used to nds and consequently for any input val- heart image of ] with a number of precomputed eigen-
ues of the seed points and speci cation of Set\We now vectors equal to 5, 20, 40, 60, 80 and 100. Both the es-
note that the Random Walker system of equationg)icén timated potential function and the resulting segmentation
alternately be formulated in terms of the normalized Lapla- were compared with the segmentation obtained from the

cian as Random Walker algorithm. The results in Figuteshow
D zLD %y =D zf; (30) that a small number of eigenvectors (less than 40) are in-
in which suf cient t_o produce a_q_uality s_egmentatiqn. By using 4_0
D %y _— 31) or more eigenvectors, it is possible to obtain a segmenmtatio

. that is qualitatively equivalent to the Random Walker resul
Consequently, we could choose to precompute the eigenHowever, in order to produce a potential function (probabil
vectors of either the normalized or unnormalized Laplacian ity distribution) that is similar to the Random Walker poten

matrix to obtain our approximation of. Although either  tja function, 80 or more eigenvectors were necessary.
choice will give similar results, we have noticed that the ) )
eigenvalues of the normalized Laplacian seem to offer a An important property that contributes to the success of

somewhat faster convergence to the trudikely due to the Random Walker algorithm is the ability of the segmenta-
the better behaved spectrum describedsil. [ Therefore,  tions to “complete” weak or missing boundarie$. [Addi-
in our experiments, we chose to employ eigenvectors of thetionally, the Normalized Cuts criterion inherently tols

normalized Laplacian. weak or missing boundaries if the segmentation is other-
wise coherent. Consequently, we expect that our precom-
3. Results puted approximate Random Walker algorithm also exhibits

robustness to weak or missing boundaries, even when using
Our experiments are intended to study three issues: 1)a small number of eigenvectors. We applied the conven-
How many eigenvectors must be precomputed in order totional Random Walker segmentation to the weak boundary
produce a good segmentation and how quickly does the soexample of §], the fast approximation method of this pa-
lution converge to the Random Walker segmentation? 2)per using 40 eigenvectors and the standard (unsupervised)



Normalized Cuts algorithm. Figufiesshows that our fastap-  algorithms like the Random Walker from detecting these
proximate Random Walker algorithm preserves the propertyweak boundaries. Another difference between our approach
that the produced segmentations are capable of completingand agglomeration is that two seeds could potentially be
a weak boundary. grouped into the same super-pixel (e.g., watershed bagin) b
Figure4 shows several examples of our fast approxima- an agglomeration method, while our approach keeps each
tion Random Walker algorithm using 40—80 eigenvectors, pixel separate and capable of attaining different labels.
compared with the standard Random Walker and (unsu- Future work will focus on bounding the approximation
pervised) Normalized Cuts segmentation results. Althoughto the Random Walker algorithm for a given set of eigen-
the segmentations we obtained were qualitatively similar vectors and nding an image-dependent method for deter-
to the Random Walker results, the online computation wasmining the number of eigenvectors to precompute, rather
much faster. For example, the segmentation®t2 512 than employing a prede ned number.
image with 40 eigenvectors required roughly 0.7 seconds
(using unoptimized MATLAB code run on a Pentium 4 References
(2.8GHz) with 1GB of RAM) between the time that the
seeds were placed and the production of the segmentation.
The precomputation step of the corresponding eigenvectors
required roughly 130s in MATLAB using the same ma-
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