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Abstract

Interactive segmentation is often performed on images
that have been stored on disk (e.g., a medical image server)
for some time prior to user interaction. We propose to use
this time to perform an of�ine precomputation of the seg-
mentation prior to user interaction that signi�cantly de-
creases the amount of user time necessary to produce a seg-
mentation. Knowing how to effectively precompute the seg-
mentation prior to user interaction is dif�cult, since a user
may choose to guide the segmentation algorithm to segment
any object (or multiple objects) in the image. Consequently,
precomputation performed prior to user interaction must
be performed without any knowledge of the user interac-
tion. Speci�cally, we show that one may precompute several
eigenvectors of the weighted Laplacian matrix of a graph
and use this information to produce a linear-time approxi-
mation of the Random Walker segmentation algorithm, even
without knowing where the foreground/background seeds
will be placed. Finally, we also show that this procedure
may be interpreted as a seeded (interactive) Normalized
Cuts algorithm.

1. Introduction

Interactive methods for image segmentation have been
gaining popularity in recent years because they permit the
targeted extraction of objects of interest with minimal guid-
ance. The method of user interaction has traditionally taken
one of two forms: 1) Providing a complete initial bound-
ary near the desired boundary that is evolved to the correct
segmentation, 2) Selecting pieces of the desired boundary
which are then connected automatically. The �rst approach
to user interaction is typically employed by active contour
or level set methods, while the second approach to user
interaction has been employed by intelligent scissors/live
wire [14, 7] and fast marching [6]. Since both of these ap-
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proaches to user interaction require explicit formulations of
the object boundary, it can sometimes be dif�cult to extend
them to higher dimension or more abstract problems like
data clustering. After the advent of the Graph Cuts algo-
rithm [2], a “scribble” interface has recently become popu-
lar in which a user marks some pixels (voxels) as belong-
ing to the object foreground and others as belonging to the
object background (known asseeds). Using this partial la-
beling (which is much less than the number of pixels), the
remaining pixels are accordingly labeled. Since the user
interaction involves labeling a few data points, these meth-
ods extend without modi�cation to higher dimensions and
more abstract clustering scenarios. Following the success
of the Graph Cuts segmentation method, several other al-
gorithms have been developed that employ the same user
interface, but differ in the procedure for generating a com-
plete pixel labeling from the seeds [9, 15]. Despite the pop-
ularity of these methods for image segmentation, the size of
high-resolution images or medical volumes is such that the
runtime can be prohibitive for employing these methods in
an interactive fashion.

In this paper we propose to shift the computational bur-
den of an interactive algorithm to anof�ine procedure that
may be performed before any user interaction has taken
place. An of�ine procedure is attractive since, in many
cases, there is substantial time between the acquisition of
the image and the segmentation of that image by a user. In
particular, medical images (volumes) often exist for days
or weeks on a data server before a user interacts with the
image. Precomputation via an of�ine procedure is dif�-
cult to formulate since it is unknown where the user will
choose to place seeds. In Section2, we show that precom-
puting a small number of eigenvectors of the graph Lapla-
cian matrix is suf�cient to allow for a good approximation
of the solution to the interactive Random Walker image seg-
mentation algorithm [9], regardless of where the seeds are
placed. Given this precomputation of a few eigenvectors of
the graph Laplacian matrix, the interactive, online segmen-
tation is performed in linear time.

It is generally agreed that of�ine computer time is less

1



valuable than the time that a user spends during interaction.
For example, in a hospital setting, of�ine precomputation
may occur over long periods of time while image data is
stored on a data server. Additionally, several applications
(e.g., radiation therapy planning) require the online segmen-
tation of many objects in the same volume. However, the
hourly rate of physicians and technicians is so high that
any time that can be saved during their usage of software
to segment or otherwise interact with image data results in
substantial cost savings. Despite the opportunity for ef�-
ciency gains, the precomputation of quantities that enhance
the speed of user interaction is a relatively unexplored topic
in computer vision. In contrast, precomputation has been
utilized with great effectiveness in the context of querying
a shortest path on a static network (e.g., a road network)
[10, 13]. To date, these algorithms utilizing precomputa-
tion produce the fastest shortest path queries of any known
approach.

In computer vision, traditional approaches to increas-
ing the ef�ciency of interactive image segmentation al-
gorithms have focused primarily on multiresolution ap-
proaches rather than performing an of�ine computation. For
example, several multiresolution methods have been pro-
posed to increase the ef�ciency of Graph Cuts [11, 19] that
can reduce the computation time to near linear complexity.
However, these approaches have three primary dif�culties:
1) Using a very low resolution results in poor segmenta-
tions, while using a �ner resolution may still be computa-
tionally expensive (e.g., the lowest resolution (64� 64� 64)
used by [11] still required roughly 10 seconds to produce a
segmentation), 2) Thin objects disappear at lower resolu-
tion, 3) Special handling is required to prevent nearby seeds
from being merged into the same region at lower resolution.
In contrast, our approach to increase the ef�ciency of an
interactive segmentation method via precomputation yields
an interactive algorithm that operates on the full resolution
with a linear time complexity.

The key computation in the Normalized Cuts algorithm
[18] is to produce eigenvectors of the normalized graph
Laplacian matrix. Since we are using eigenvectors of the
graph Laplacian matrix to approximate the Random Walker
solution, it is natural to look for an interpretation of our
procedure in terms of the Normalized Cuts algorithm. We
�nd that our use of the Laplacian eigenvectors may be in-
terpreted as introducing an interactive seeding interfaceinto
Normalized Cuts.

The structure of the paper is as follows: In Section2 we
review the Random Walker algorithm and show how we can
use precomputed eigenvectors to produce an approximate
solution, even in the absence of knowing the location of the
user input seeds. We then develop the connection between
this precomputed Random Walker algorithm and Normal-
ized Cuts. In Section3 we give results demonstrating that

the algorithm correctly converges to the Random Walker
segmentation as more eigenvectors are used, and that our
approximation preserves the quality segmentation proper-
ties of the Random Walker algorithm. Section4 draws con-
clusions and discusses future work.

2. Method

We begin by �xing our notation. Agraph consists of a
pair G = ( V; E) with vertices (nodes)v 2 V andedges
e 2 E � V � V , with N = jV j and M = jE j. An
edge,e, spanning two vertices,vi andvj , is denoted byeij .
A weighted graph assigns a value to each edge called a
weight. The weight of an edge,eij , is denoted byw(eij ) or
wij and is assumed here to be nonnegative. Thedegreeof
a vertex isdi =

P
w(eij ) for all edgeseij incident onvi .

The following will also assume that our graph is connected
and undirected (i.e.,wij = wji ). An image may be associ-
ated with a graph by identifying each pixel with a node and
de�ning an edge set to represent the local neighborhood re-
lationship of the pixels (e.g., a 4-connected lattice).

The Random Walker segmentation algorithm of [9] com-
putes the probability, for each pixel, that a random walker
leaving that pixel will �rst arrive at a foreground seed be-
fore arriving at a background seed. It was shown in [9] that
these probabilities may be calculated analytically by solv-
ing a linear system of equations with the graph Laplacian
matrix. TheLaplacian matrix is de�ned as

L(i; j ) =

8
><

>:

di if i = j;
� wij if vi andvj are adjacent nodes;
0 otherwise;

(1)

whereL(i; j ) is indexed by verticesvi andvj .
Given a set of foreground seeds,VF , and background

seeds,VB , whereVF \ VB = ; ; VS = VF [ VB , we can
compute the probabilities,x i , that a random walker leaving
nodevi arrives at a node inVF before arriving at a node in
VB by solving1

L U xU = � Bx S : (2)

The variablexU represents the set of probabilities corre-
sponding to unseeded nodes,xS is the set of probabili-
ties corresponding to seeded nodes (i.e., '1' for foreground
nodes and '0' for background nodes) andL U ; B correspond
to the matrix decomposition ofL

L =
�

L S B
B T L U

�
: (3)

Our goal is to �nd an approximate solution toxU without
knowingVF and VB . The approach to this problem will

1Added 6/12/08 by LG: Thanks to Yue Wu for pointing out that (2)
should readL U xU = � B T xS . Text in the body of paper reproduced as
published.



be to observe that multiplyingL with x (containing values
corresponding to the seeds) will produce somef , i.e.

Lx = f: (4)

Then, if we perform an eigenvector decomposition ofL

Q� QT x = f; (5)

we can computex up to a constant from

x = Ef; (6)

whereE is the pseudoinverse ofL , equalingE = Q� � 1QT

in which �(1 ; 1) = 0 . The reason that�(1 ; 1) = 0 is
because, for a connected graph,L has a single eigenvalue
corresponding to zero and the corresponding eigenvector is
constant [1]. However, sincef T 1 = 0, by virtue of (4), we
can ignore the zero eigenvalue and constant eigenvector in
(6), since this entry will contribute nothing tox. Due to the
constant vector nullspace ofL , this procedure for forming
x in (6) is correct to a constant value. The issue of how to
determine this constant will be addressed later.

In order to limit the computational burden, storage and
time complexity of our online algorithm, we can de�ne a
K -approximation tox as

xK = QK � � 1
K QT

K f; (7)

in which K is the number of eigenvectors used to produce
an approximation tox. If K = N thenxK = x, up to a
constant. Clearly, from (6), the most effective eigenvectors
to use will be those that correspond to the smallest eigen-
vectors. To avoid notational clutter we will assume for the
remainder of the exposition that someK has been �xed and
write all the variables without theK subscripts. Note that,
for a constantK and knownf , the approximation ofx de-
scribed in (7) is computed in time that is linear in the num-
ber of nodes (pixels). Taking the approach of solving (7) al-
lows us to perform our precomputation of the eigenvectors
in advance of knowing the seed locations, since the seed
locations only serve to produce a differentf vector. The
primary question we face in the next section is how to know
what thef vector will be for an input set of seed locations.

2.1. Determination of the right hand side

If the foreground and background seed sets consist of
just a single node each, i.e.,jVF j = jVB j = 1 then, for
vf 2 VF andvb 2 VB , f is known to be [1]

f i =

8
><

>:

� if i = f ;
� � if i = b;
0 otherwise;

(8)

where� is the effective conductance between nodesvf and
vb [1]. Therefore, when a single foreground and back-
ground seed are input, it is suf�cient to treat� = 1 , compute

x with (6) and then normalize the computedx to lie between
zero and one in order to get the random walker probabilities
computed from (2).

In the more typical use case of more than a single fore-
ground and background seed being input, the authors are
unaware of any known method for determiningf without
knowing the variablex in advance. Consequently, we now
present a method for approximatingf in constant time (for
a �xed number of seeds) with the precomputed eigenvectors
in Q.

We begin by noting that application ofE to both sides of
(4) results in

�
I � ggT �

x = Ef = Q� � 1QT f; (9)

whereg is the eigenvector ofL corresponding to the zero
eigenvalue. We can decomposef into [f S ; f U ] (using
“MATLAB notation”), corresponding to the seeded and un-
seeded nodes, and note thatf U = 0 . Sincef U = 0 , our
primary interest is in calculatingf S , from which we can
�nd x. In order to �nd f , we decomposeE into

E =
�

ES R
RT EU

�
: (10)

Note that
RT = QU � � 1QT

S ; (11)

which means thatR can be approximated by the computed
eigenvectors comprisingQ.

From (4) and (9) we know that

L SxS + Bx U = f S ; (12)

xU + gU gT
U xU = RT f S ; (13)

which combine to form

�
I � BR T �

f S = Lx S � BgU gT
U xU : (14)

Let
P =

�
I � BR T �

: (15)

In order to �nd f S , we need to solve the linear system of
equations de�ned by (14) which is of orderjSj. We may
handle the unknownxU on the RHS by replacing it with the
single unknown� = gT

U xU . Now, in order to solve (14) for
f S , we decomposef S = f̂ � � ~f and solve

P f̂ = L SxS ; (16)

P ~f = BgU : (17)

Note that, by de�nition ofg,

0 = gT Lx = gT f = gT
�

f̂ � � ~f
�

: (18)



(a) (b) (c)

Figure 1. Illustration of problems with two approaches to seeded clusteringin spectral coordinates with multiple seeds. (a) Example graph
— Two nodes are seeded with the `x' label (foreground) and two nodesare seeded with the `triangle' label. The issue is to decide the label
of the node marked with a question mark (the unlabeled node). The edgesconnecting the unlabeled node to the triangle labels have unit
weight, while the edge connecting the unlabeled node to the `x' label has weight k and the edge connecting the two `x' labeled nodes has
weight 1

k . (b) Consider labeling the unlabeled node by assigning it the label of the closest seed (in spectral space). Ifk = 1 + � , then
the unlabeled node takes the `x' label, even though this labeling gives a suboptimal Normalized Cuts value of the partition. (c) Consider
labeling the unlabeled node by assigning it the label of the seed group with anaverage spectral coordinate closer to the unlabeled node. If
k = 1000, the unlabeled node is erroneously labeled `triangle', even though it is strongly connected to an `x' seed.

Therefore, we may solve for the unknown� by computing2

� =
gT f̂

gT ~f
: (19)

Givenf S , we may compute from (13) that

xU = RT f S � �g U ; (20)

representing the approximate random walker probabilities,
which may be thresholded at 0.5 in order to produce a �nal
segmentation (23). In our experience, an excellent approx-
imation ofx may be obtained for even a smallK (see Sec-
tion 3). However, even a small error in the computation of
� can lead to an inaccurate post-thresholded segmentation.
Therefore, we have adopted the procedure of choosing the
threshold ofx that produces the partition with the best Nor-
malized Cuts value. We note that, depending on the number
of eigenvectors used in the approximation, it may be pos-
sible that the thresholded segmentation results in a small
number of nodes disconnected from their respective seeds.
In these cases, a connected component procedure could be
employed.

2.2. Algorithm summary

The algorithm has two parts: 1) An “of�ine” algorithm
that has no knowledge of the seeds that the user will use
to segment an object, 2) An “online” algorithm that inputs
seeds from a user and �nds the segmentation.

The “of�ine” procedure:

1. Input an image and compute edge weights, according
to e.g.,

wi = exp
�
� � (I j � I k )2�

for f vj ; vk g 2 ei ; (21)

2Added 6/12/08 by LG: Thanks to Yue Wu for pointing out that (19)

should read� = gT
S

^f

gT
S

~f
. Text in the body of paper reproduced as published.

where I j indicates the image (volume) intensity at
voxel vj .

2. Build the Laplacian matrix,L of (1).

3. ComputeK eigenvectors ofL , Q.

Ef�cient computation of the eigenvectors ofL has been
well-studied in the Normalized Cuts literature [18, 8].

Given user-placed seeds, the “online” procedure is:

1. Using the precomputedQ, generate aK -estimate ofP
in (15) using theK -estimatedRT of (11).

2. Solve (16) and (17) with theK -estimatedP.

3. Calculate� from (19).

4. GeneratexU from (20).

5. Thresholdx to produce the partition with the best Nor-
malized Cuts value.

The most computationally intense step in the “online” pro-
cedure is the solution of (16) and (17). However, if the
number of seeds is constant, this step requires constant time
(for a given image resolution). Solving a full (i.e., non-
sparse) set of equations for a matrix obtained from 500
seeds (i.e., having size500� 500) via LU decomposition re-
quires roughly 0.04s in MATLAB on a Pentium 4 (2.8GHz)
with 1GB of RAM. Note that any seeds for which all of
the neighboring nodes are also seeds need not be used in
(16) and (17), since the correspondingf S entries are zero.
Therefore, for a constant number of seeds and eigenvectors,
the online procedure has a complexity that is linear in the
number of nodes.

2.3. Relationship to Normalized Cuts

The above procedure for approximating the Random
Walker solution by precomputing eigenvectors of the Lapla-
cian matrix can also be interpreted as an interactive version



(a) Original (i) 5 eig (j) 20 eig (k) 40 eig (l) 60 eig (m) 80 eig (n) 100 eig (o) Exact

Figure 2. Since our precomputation method produces an approximation tothe Random Walker image segmentation algorithm, we want to
know how many eigenvectors are necessary to precompute in order to get a quality segmentation. Foreground seeds are given in green,
background seeds in blue and the segmentation boundary is outlined in red. Top row: Segmentation result with the use of 5, 20, 40, 60,
80 and 100 eigenvectors. The Random Walker segmentation is on the far right (equivalent to using N eigenvectors). Bottom row: The
potential function corresponding to each of the segmentations, using progressively more eigenvectors.

of the Normalized Cuts algorithm [18]. To see this connec-
tion, recall that the Normalized Cuts method is used to �nd
a two-way partition of a graph by thresholding the second
smallest generalized eigenvector associated with the prob-
lem

Ly = �Dy; (22)

wherey is the generalized eigenvector associating one value
with each node,� is the eigenvalue andD is a diagonal
matrix such thatD(i; i ) = di .

Although the Normalized Cut method traditionally em-
ploys only a single (generalized) eigenvector to bipartition
a graph (corresponding to the smallest nonzero eigenvalue),
Shi and Malik also suggest employing aK -means algo-
rithm in the coordinate space de�ned by the “coordinates”
assigned to each node in successive eigenvectors. Such co-
ordinates are sometimes referred to asspectral coordinates
and have previously been used for clustering (e.g., [3]). In
the Normalized Cuts interpretation of our method, the spec-
tral coordinates are used to de�ne a distance measure, from
which the distance from each node to the seeds may be
computed and then partitioned according to which seed has
shorter distance. Speci�cally, consider the case of two sin-
gle seeds,VF = vf ; VB = vb. We may de�ne the desired
partition as

Foreground = f vi j dist(vi ; vF ) < dist(vi ; vB )g;

Background = f vi j dist(vi ; vB ) � dist(vi ; vF )g;
(23)

where we de�ne

dist(vi ; vj ) = r T
ij Y� � 1Y T r ij ; (24)

Y is the matrix of all generalized eigenvectors, taking col-
umni asyi , � � 1 is a diagonal matrix with�( i; i ) = 1

� i
and

r ij is an indicator vector taking values

r ij (k) =

8
><

>:

1 if i = k;
� 1 if j = k;
0 otherwise:

(25)

The inclusion of� � 1 in the de�nition of distance (24)
is the key to the connection with the Random Walker algo-
rithm (in [18], Shi and Malik perform clustering of the spec-
tral coordinates of the nodes without weighting the spec-
tral coordinates with their corresponding eigenvalues). By
including � � 1 in the de�nition of distance, we can inter-
pret (24) as equivalent to theeffective resistance(viewing
the graph as a linear circuit where weights are equivalent to
conductances) between two nodes. The effective resistance
is also proportional to thecommute timeof a random walk
on the weighted graph from nodevi to vj . The commute
time measures the expected number of steps that a random
walker would take to pass from nodevi to vj and then back
again fromvj to vi . The commute time has become a pop-
ular quantity for graph embedding (dimensionality reduc-
tion), graph matching and unsupervised clustering [17, 16].

To see the connection between the distance in spectral
space de�ned by (24) and commute time, de�ne thenor-
malizedLaplacian matrix as

~L = D � 1
2 LD � 1

2 ; (26)

with corresponding eigenvector decomposition

~L = Q� QT : (27)

The eigenvectors,Q, are related to the generalized eigen-
vectors described by (22)

Y = D � 1
2 Q: (28)



(a) Original (b) Random Walker (c) Approx. RW (40 eigs) (d) NCuts

Figure 3. The diagonal line example of [9]. Foreground seeds are given in green, background seeds in blueand the segmentation boundary
is outlined in red. The ability of both the Random Walker and the Normalized Cutsalgorithms to correctly handle this image suggests
that the two methods are related. The automatic Normalized Cuts result was obtained after the third cut (i.e., the NCuts algorithm initially
segments the disconnected black lines). Although a relatively small number of precomputed eigenvectors are used to approximate the
Random Walker solution, the ability of the algorithm to segment objects with weakboundaries is preserved.

Therefore, we may rewrite (24) in terms of the eigenvectors
of ~L as

dist(vi ; vj ) = r T
ij D � 1

2 Q� � 1QT D � 1
2 r ij =

NX

k=2

1
� k

 
qikp

di
�

qjkp
dj

! 2

; (29)

which equals the effective resistance between two nodes
and is proportional to the commute time betweenvi andvj

[12]. It has been shown that the Random Walker algorithm
of [9] is equivalent to �nding the smallest effective resis-
tance between each pixel and the foreground seeds (consid-
ered as merged into a single node) and the background seeds
(similarly merged). When using aK -approximation to the
Random Walker potentials, the summation in (29) occurs
overK eigenvectors instead ofN .

In the more realistic situation of multiple seeds, the
method in Section2.1 is equivalent to treating all fore-
ground seeds as a single node and all background seeds as
a single node. In the context of the distance function de-
scribed above, it might seem more natural to adopt another
approach to treating multiple seeds. Speci�cally, two other
approaches for treating multiple foreground/background
seeds appear obvious. The �rst approach is to assign the
node, vi 2 VU , to foreground (background) if the dis-
tance between the node is smaller to a foreground (back-
ground) seed than to any background (foreground) seed,
i.e., Foreground = f vi j 9 vf 2 VF s:t : dist(vi ; vf ) <
dist(vi ; vb) 8 vb 2 VB g. The second approach is to as-
sign the unseeded node to foreground if the average distance
between the node and all foreground seeds is smaller than
the average distance between the node and all background
seeds, i.e.,Foreground = f vi j average (dist(vi ; vf )) <
average (dist(vi ; vb)) ; 8 vf 2 VF ; vb 2 VB g. Unfortu-
nately, both of these approaches have serious drawbacks,
which we now illustrate.

The �rst (minimum) approach produces poor segmenta-
tions because a node might be labeled background if the
node has a shorter distance to a single, slightly closer back-
ground seed, even if the node has only a slightly more dis-
tant relationship with several foreground seeds. This situa-
tion is illustrated in Figure1(b). Even though the unlabeled
node is very close to two background seeds, the minimum
approach would assign the node to the foreground because
it is � closer to a single foreground seed. As shown in the
�gure, such a rule would result in a partition with a sub-
optimal Normalized Cut value. Therefore, it seems that the
correct treatment of multiple seeds is to simultaneously take
into account all of the foreground/background seeds.

The second (averaging) approach also produces poor
segmentations, but for different reasons. In this approach,
the average distances are unduly biased by outlier seeds that
are at a great distance (and possibly included by a user to
address dif�culties in the segmentation in other regions of
the image). A succinct example of this problem is given
by Figure1(c). Even though the unlabeled node is nearly
equivalent with the foreground seed (due to the near-in�nite
weight), the presence of a distant foreground seed causes
the unlabeled seed to be labeled background. Using this
construction the Normalized Cut value of this partition can
be made arbitrarily poor for the averaging approach by in-
creasing the value ofk.

Using the approach of merging the nodes corresponding
to all foreground seeds and all background seeds that is im-
plicit in Section2.1produces the cut in the graph of Figure1
with the lowest Normalized Cut value. Due to this connec-
tion between the precomputed Random Walker algorithm
and a seeded version of Normalized Cuts, we suggest cut-
ting the value of the approximated potential function at the
value producing the best Normalized Cut value.



Figure 4. Several examples of our fast approximate Random Walker image segmentation algorithm. Foreground seeds are given in green,
background seeds in blue and the segmentation boundary is outlined in red. For each group, the left image is the original, then the
standard Random Walker segmentation, our fast approximation RandomWalker algorithm using 40–80 eigenvectors and the (automatic)
Normalized Cut segmentation. In our algorithm, the majority of the computation (i.e., production of eigenvectors) may be precomputed
(without knowing the seed locations), making the “online” runtime fast.

2.4. Generalization of results

The development here for using precomputed eigenvec-
tors to approximately solve a linear system generalizes be-
yond the solution of (4). Speci�cally, if the matrix has a sin-
gle zero eigenvalue andf U = 0 , then the procedure above
can be used to �ndf S and consequentlyx for any input val-
ues of the seed points and speci�cation of setS. We now
note that the Random Walker system of equations in (4) can
alternately be formulated in terms of the normalized Lapla-
cian as

D � 1
2 LD � 1

2 y = D � 1
2 f; (30)

in which
D � 1

2 y = x: (31)

Consequently, we could choose to precompute the eigen-
vectors of either the normalized or unnormalized Laplacian
matrix to obtain our approximation ofx. Although either
choice will give similar results, we have noticed that the
eigenvalues of the normalized Laplacian seem to offer a
somewhat faster convergence to the truex (likely due to
the better behaved spectrum described in [5]). Therefore,
in our experiments, we chose to employ eigenvectors of the
normalized Laplacian.

3. Results

Our experiments are intended to study three issues: 1)
How many eigenvectors must be precomputed in order to
produce a good segmentation and how quickly does the so-
lution converge to the Random Walker segmentation? 2)

How fast does the online computation run? 3) Are impor-
tant properties of the full Random Walker segmentation,
such as weak boundary detection and quality segmenta-
tions, preserved?

In order to address the �rst question, we segmented the
heart image of [9] with a number of precomputed eigen-
vectors equal to 5, 20, 40, 60, 80 and 100. Both the es-
timated potential function and the resulting segmentation
were compared with the segmentation obtained from the
Random Walker algorithm. The results in Figure2 show
that a small number of eigenvectors (less than 40) are in-
suf�cient to produce a quality segmentation. By using 40
or more eigenvectors, it is possible to obtain a segmentation
that is qualitatively equivalent to the Random Walker result.
However, in order to produce a potential function (probabil-
ity distribution) that is similar to the Random Walker poten-
tial function, 80 or more eigenvectors were necessary.

An important property that contributes to the success of
the Random Walker algorithm is the ability of the segmenta-
tions to “complete” weak or missing boundaries [9]. Addi-
tionally, the Normalized Cuts criterion inherently tolerates
weak or missing boundaries if the segmentation is other-
wise coherent. Consequently, we expect that our precom-
puted approximate Random Walker algorithm also exhibits
robustness to weak or missing boundaries, even when using
a small number of eigenvectors. We applied the conven-
tional Random Walker segmentation to the weak boundary
example of [9], the fast approximation method of this pa-
per using 40 eigenvectors and the standard (unsupervised)



Normalized Cuts algorithm. Figure3 shows that our fast ap-
proximate Random Walker algorithm preserves the property
that the produced segmentations are capable of completing
a weak boundary.

Figure4 shows several examples of our fast approxima-
tion Random Walker algorithm using 40–80 eigenvectors,
compared with the standard Random Walker and (unsu-
pervised) Normalized Cuts segmentation results. Although
the segmentations we obtained were qualitatively similar
to the Random Walker results, the online computation was
much faster. For example, the segmentation of a512� 512
image with 40 eigenvectors required roughly 0.7 seconds
(using unoptimized MATLAB code run on a Pentium 4
(2.8GHz) with 1GB of RAM) between the time that the
seeds were placed and the production of the segmentation.
The precomputation step of the corresponding eigenvectors
required roughly 130s in MATLAB using the same ma-
chine. Using the MATLAB code for the Random Walker
algorithm that is available on Grady's webpage, this same
segmentation required 10.4s.

4. Conclusion

In this paper we addressed the question of splitting the
computation time for the interactive Random Walker al-
gorithm into a costly pre-interaction “of�ine” eigenvector
computation and a very fast post-interaction “online” seg-
mentation. We demonstrated that roughly 40–80 eigenvec-
tors were suf�cient to produce a segmentation of qualita-
tively the same quality as the full Random Walker solution
with a speed advantage of over two orders of magnitude.
Additionally, we showed that it was possible to view our
approximation to the Random Walker potentials from the
standpoint of distance in the “spectral coordinates” space
de�ned by the weighted generalized eigenvectors employed
by the Normalized Cuts algorithm. In the context of Nor-
malized Cuts, the present paper could also be considered as
a principled method for introducing user interaction into the
popular Normalized Cuts algorithm.

Employing our precomputation approach is especially
useful for the segmentation of high resolution images or 3D
volumes, for which the exact (i.e., unapproximated) Ran-
dom Walker algorithm can be too slow. On the512� 512
image in Section3, we gained more than an order of magni-
tude in speed over the Random Walker algorithm, at the cost
of a precomputation step. Additionally, the precomputation
method presented in this paper could easily be coupled with
any agglomeration (“supernode”) method for coarsening a
graph (e.g., watersheds [4], mean-shift [19]) to produce ex-
tremely fast “online” segmentations. Note that agglomera-
tion is fundamentally different than the approach presented
here, since the agglomeration super-pixels may cross weak
boundaries (e.g., the entire white area in Figure3 would
be a single watershed basin), which would prevent smart

algorithms like the Random Walker from detecting these
weak boundaries. Another difference between our approach
and agglomeration is that two seeds could potentially be
grouped into the same super-pixel (e.g., watershed basin) by
an agglomeration method, while our approach keeps each
pixel separate and capable of attaining different labels.

Future work will focus on bounding the approximation
to the Random Walker algorithm for a given set of eigen-
vectors and �nding an image-dependent method for deter-
mining the number of eigenvectors to precompute, rather
than employing a prede�ned number.
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