
Computing Exact Discrete Minimal Surfaces: Extending and Solving the

Shortest Path Problem in 3D with Application to Segmentation∗

Leo Grady

Siemens Corporate Research

Department of Imaging and Visualization

755 College Road East, Princeton, NJ 08540

Leo.Grady@siemens.com

Abstract

Shortest path algorithms on weighted graphs have found

widespread use in the computer vision literature. Although

a shortest path may be found in a 3D weighted graph, the

character of the path as an object boundary in 2D is not

preserved in 3D. An object boundary in three dimensions is

a (2D) surface. Therefore, a discrete minimal surface com-

putation is necessary to extend shortest path approaches to

3D data in applications where the character of the path as a

boundary is important. This minimal surface problem finds

natural application in the extension of the intelligent scis-

sors/live wire segmentation algorithm to 3D. In this paper,

the discrete minimal surface problem is both formulated

and solved on a 3D graph. Specifically, we show that the

problem may be formulated as a linear programming prob-

lem that is computed efficiently with generic solvers.

1. Introduction

Shortest path algorithms on weighted graphs have found

many applications in computer vision, including segmenta-

tion [9, 4], video summarization [12], perceptual grouping

[3] and solving PDEs [14]. Since computer vision tech-

niques have been increasingly applied to 3D data in the con-

text of video sequences or medical acquisitions, researchers

have looked for 3D extensions of many conventional 2D

techniques. Although a shortest path may be found in a

3D weighted graph, the character of the path as an object

boundary in 2D is not preserved in 3D. Specifically, a 3D

object boundary is necessarily a (2D) surface. Therefore,

extension of a shortest path approach to 3D requires com-

putation of an appropriate surface (when the character of

the path as boundary is important). We have two goals in

∗Published in: IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition — CVPR 2006, volume 1, pages 69–78,

IEEE, IEEE, June 2006.

this paper: 1) Reformulate the shortest path problem on

weighted graphs to find minimal surfaces on weighted com-

plexes (3D graphs), 2) Provide a method to solve this min-

imal surface problem. Our method for solving the discrete,

weighted minimal surface problem will then be demon-

strated in the context of 3D segmentation, since the charac-

ter of the surface as an object boundary fits most naturally

in the context of segmentation.

Shortest paths are used as object boundaries in several

2D image segmentation algorithms, most notably in the

popular intelligent scissors/live wire algorithm [9, 4]. The

intelligent scissors algorithm treats the image as a graph

that is weighted to reflect intensity changes and inputs two

points from a user along an object boundary. These points

are then used to define the endpoints for a shortest path com-

putation. The shortest path is then viewed as a piece of the

object boundary that may be extended by the placement of

additional points. Intelligent scissors has been previously

applied to 3D image segmentation tasks by computing sev-

eral shortest paths in 3D and using these paths to reconstruct

a surface. Falcão et al. separate the 3D image into slabs

for which the object is assumed to have constant topology.

A user then employs shortest path segmentation on several

cross-sections (with some constraints) which are used for

surface reconstruction. Knapp et al. employ orthogonal

cross-sections to reconstruct the surface, which may have

a nontrivial topology. These cross-sections are obtained via

shortest paths. In 2D intelligent scissors, shortest paths pro-

vide minimal boundaries of the segmented object. Since

these extensions of intelligent scissors to 3D do not pre-

serve this minimal character of the object boundary, we ar-

gue that the discrete minimal surfaces developed here pro-

vide a more natural extension of intelligent scissors to 3D.

Minimal surfaces have been studied extensively outside

of computer vision in the fields of geometric measure theory

and variational calculus [8]. However, these fields focus on

finding minimal surfaces in a space that is continuous and

1

Euclidean, rather than on the discrete, weighted lattices that

arise naturally in computer vision. In order to avoid confu-

sion with the body of existing literature, we will employ the

term minimum-weight surfaces to refer to minimal sur-

faces defined on the space of discrete, weighted lattices.

Although lattices are the most relevant structure for com-

puter vision, the techniques developed here also apply to

more general discrete structures.

The shortest path problem requires specification of ad-

ditional constraints in order to avoid the solution of a null

path. Additional constraints are typically included in one of

two ways:

1. The shortest path is required to enclose one specified

region of space while excluding a second specified re-

gion (i.e., separating the two regions),

2. The shortest path is required to have a specified bound-

ary (i.e., endpoints).

These methods for specifying constraints for the minimal

surface problem will be referred to as Type I and Type II

constraints, respectively. Type I constraints give rise to a

source separation problem that is solved efficiently on dis-

crete spaces by Ford and Fulkerson’s max-flow/min-cut al-

gorithm [11]. Type II constraints give rise to a source con-

nection problem that is solved efficiently on discrete spaces

by Dijkstra’s algorithm [11].

Type I and Type II constraints are also necessary in the

specification of minimum-weight surfaces in order to avoid

the null solution. The minimum-weight surface problem

with Type I constraints is equivalent to solving the max-

flow/min-cut problem in 3D, which has known solutions in

both continuous [1] and discrete spaces [11]. Type II con-

straints require that the minimum-weight surface have a pre-

scribed boundary. Surface boundaries are always given by

closed contours, an example of which is the wire rim giving

the boundary of a soap bubble. The minimum-weight sur-

face problem with Type II constraints has been studied in

continuous space as Plateau’s problem (e.g., [8]), but there

is very limited work on minimal surfaces with Type II con-

straints in discrete space. In fact, the only work that we are

aware of is limited to those circumstances in which it is pos-

sible to translate Type II constraints into Type I constraints

[5]. Since Type II constraints govern shortest path problems

on 2D weighted graphs, our focus is on the solution of the

Type II constrained minimum-weight surface problem on

3D weighted graphs.

Neither Type I nor Type II constraints have priority over

the other, i.e., different applications call for different con-

straint types. As evidence for this position, we note the en-

during interest in both (2D) graph cuts [2] and intelligent

scissors [9, 4], despite the fact that graph cuts applies Type

I constraints and intelligent scissors applies Type II con-

straints to the shortest path problem. Additionally, our goal

is not to argue that minimum-weight surfaces are the best

tool for 3D segmentation, taking the position that graph cuts

has already established interest in this problem (albeit with

Type I constraints). Therefore, given the interest in applying

minimal surfaces to 3D segmentation and the consistent ap-

plication of Type II constraints in shortest path applications,

we simply recognize a problem to be solved — Computa-

tion of minimum-weight surfaces in 3D with Type II con-

straints. Previous attempts to extend intelligent scissors to

3D indicate a clear interest in the resolution of this problem.

This paper is outlined as follows: In Section 2 we de-

velop the minimum-weight surface problem in 3D and pro-

vide a general method of solution. In Section 3 we demon-

strate the application of this algorithm to synthetic 3D seg-

mentation problems of various character and then apply

the algorithm to real 3D data. Finally, Section 4 provides

concluding remarks and suggests directions for further re-

search.

2. Method

In this section, we first outline a framework for viewing

graph-based algorithms that produce boundaries in an im-

age. This framework is based on the notion of a primal and

dual lattice. Using this framework, we review the shortest

path problem and formulate the minimum-weight surface

problem. The remaining sections prove conditions under

which this problem may be solved with a generic linear pro-

gramming solver. Fortunately, these conditions hold for any

scenario likely to be relevant to computer vision.

2.1. Duality

The notion of duality has played a role in graph theory

(and combinatorial topology) since the time of Poincaré, in

which a dual graph was defined from a planar graph by

replacing each face with a dual node and connecting two

nodes if their respective faces shared an edge. In this exam-

ple, the primal graph is defined as the initial planar graph

and the dual graph is defined as the result of the duality op-

eration. However, this duality operation is more general in

the context of algebraic topology [6] and, in fact, depends

on the dimensionality of the ambient space in which the

graph is embedded. In fact, a clear understanding of duality

has recently come to the forefront of numerical computing

(see [7] for an excellent treatment). In a general context,

the standard node/face duality may be thought of as the 2-

dual, in the sense that nodes are dual to 2D simplices (i.e.,

faces). For example, one could just as easily define a 1-dual

of a graph by replacing each edge with a node and connect-

ing nodes based upon whether or not their respective edges

co-terminated at a node (this 1-dual is sometimes called the

line graph). Figure 1 offers a picture of the relationship be-

tween the primal and dual complexes. In general, given a

2

(a) 2D Correspondence (b) 2D Dual Lattices (c) 3D Correspondence (d) 3D Dual Lattices

Figure 1. Duality in two and three dimensions. a) Primal and dual structures for a 2D, 4-connected lattice. b) The primal (black) and dual

(blue/gray) 2D lattices. c) Primal and dual structures for a 3D, 6-connected lattice. d) The primal (black) and dual (blue/gray) 3D lattices.

Treating the primal lattice as the image volume, edges of the dual lattice define a separating boundary of the pixels in 2D. In contrast, faces

of the dual lattice are required to “box in” the voxels of the primal lattice in 3D.

k-simplex in p dimensions, its dual will be a p − k simplex

[7]. Figure 1 illustrates simplices and their duals for two

and three dimensions.

The duality operation naturally produces an “outside

face”, but this outside face may be given several interpre-

tations. For example, one might assign the outside face

to a single node in the dual graph. Instead of this con-

struction, we have chosen to subdivide the outside face in

the dual into cells for two reasons: 1) A lattice is easier to

work with computationally, 2) The addition of weighted ex-

tra edges/faces on the outside allow for a higher cost to be

assigned to a longer path/surface enclosing the border pix-

els/voxels.

Duality offers a convenient taxonomy of graph-based

segmentation algorithms. There are two basic types of

graph-based segmentation algorithm: Implicit boundary al-

gorithms and explicit boundary algorithms. Implicit bound-

ary algorithms, such as graph cuts [2] or normalized cuts

[13], label each node (pixel) as foreground/background and

the boundary between them is implied by the labeling. In

contrast, explicit boundary algorithms, such as intelligent

scissors [9, 4], identify the boundary explicitly and a fore-

ground/background labeling is given implicitly. The notion

of duality provides a convenient may of viewing these seg-

mentation algorithms in which one may treat the image data

as existing at the nodes of the primal lattice. In this frame-

work, implicit boundary algorithms operate on the primal

lattice while explicit boundary algorithms operate on the

dual lattice. Therefore, the components of the dual lattice

are used to “box-in” the pixels in the primal lattice (e.g.,

edges/paths in 2D, faces in 3D). However, as illustrated in

Figure 1, the corresponding dual lattice changes with di-

mension while the primal lattice remains constant, prompt-

ing the need for more modification of explicit boundary al-

gorithms than implicit boundary algorithms.

Specifically, the popular graph cuts algorithm of [2] pro-

vides (Type I) fixed conditions at the nodes of the pri-

mal lattice and seeks a minimal cut (dual to a closed con-

tour) between the source and sink nodes. In contrast, the

intelligent scissors approach of [9, 4] fixes points along

the boundary (Type II) in the dual lattice (sometimes re-

ferred to as the “cracks” or “bels” between the pixels [4])

and seeks the minimal boundary (path) that includes these

endpoints. When considering higher dimensional images,

graph cuts extends naturally, because edge cuts are always

dual to (p − 1)-surfaces, which define the boundary of a

p-dimensional set of voxels. However, the explicit bound-

ary approach given by intelligent scissors must be redevel-

oped for each dimension. Specifically, since the shortest

path algorithm used in the 2D case is inappropriate to find

a bounding surface in 3D, a minimum-weight surface must

be used.

2.2. Minimum­weight surfaces

Before beginning the exposition, we fix our notation. For

our present purposes, the primal and dual complexes will be

three-dimensional, 6-connected lattices. Define a three di-

mensional complex [6] as consisting of a set C = (V,E, F)
with vertices (nodes) v ∈ V , edges e ∈ E ⊆ V × V and

faces f ∈ F ⊆ E × E × E × E (since we will be deal-

ing exclusively with 6-connected lattices). Let n = |V | and

m = |E|, where | · | denotes cardinality. Nodes, edges and

faces will all be indexed by single subscripts. A weighting

assigns a value to each edge called a weight. The weight of

an edge, ei, is denoted by wi and considered in this work

to be nonnegative. An oriented complex is one for which

each structure is additionally assigned an ordering of its

constituent vertices. Intuitively, the orientation corresponds

to a “direction” of an edge or a “clockwise” or “counter-

clockwise” orientation of a face. A face and a bordering

edge are said to have coherent orientation if the ordering

given by the edge orientation is found in the orientation of

3

the face. Since the faces of a 6-connected lattice are de-

generate simplices, the standard “even parity” definition of

orientation is inappropriate. For our purposes, consider an

orientation of a face, represented by column b indicating

a signed membership of each edge to the face, as valid if

Ab = 0, where A is defined in (4). Clearly, b may take

a positive or negative sign while fulfilling this condition,

which may be interpreted here as opposite orientations. In-

tuitively, a face is coherently oriented with a bordering edge

if the edge “points” in the same direction as the “clockwise”

or “counterclockwise” traversal of the face. For example, in

Figure 2, edge e1 is coherent with face fA. In the context of

image processing, nodes are associated with data elements

(e.g., pixels, voxels) and the edges define a neighborhood

relation. For our purposes, the 6-connected lattice is taken

to have a face on every “square” of the lattice. Orientations

must be assigned consistently, but may be assigned arbitrar-

ily. An example orientation would be to orient all edges

to point from nodes with smaller coordinates to nodes with

larger coordinates and to orient each face in a clockwise

manner (relative to a particular view of the lattice).

Graph-based segmentation algorithms typically focus on

cutting a weighted graph, with weights given on the primal

edges via a function of the intensity, e.g.,

wi = exp
(

−β(Ij − Ik)2
)

for {vj , vk} ∈ ei, (1)

where Ij indicates the image (volume) intensity at voxel vj .

The minimum path problem may be viewed as the solu-

tion to the optimization problem

min
y

Q(y) =
∑

i

wiyi, (2)

where yi represents an indicator vector on the set of edges,

with yi = 1 indicating that edge ei belongs to the path and

yi = 0 indicating that edge ei does not belong to the path.

In the absence of constraints, the solution of (2) yields a

vector of yi = 0 ∀ei ∈ E, since all weights are nonneg-

ative. Type I constraints may be introduced by specifying

disjoint node subsets that must appear in separate connected

components if the edges in the computed path are removed

from the complex. Type II constraints may be introduced by

specifying endpoints for the path. A succinct formulation of

Type II constraints is given by

Ay = p, (3)

where p is a vector of all zeros except for a ps = 1 and

pt = −1, for endpoints {vs, vt}. The matrix A is the node-

edge incidence matrix

Av,e =































+1 if the vertex appears first in the

edge orientation,

−1 if the vertex appears second in the

edge orientation,

0 otherwise.

(4)

The node-incidence matrix in (3) plays the role of the

boundary operator [6]. In this case, the boundary operator

inputs an edge path (indicated by y) and returns the nodal

boundary of that path (fixed by p). In general, the bound-

ary operator inputs the indicator function of a complex and

outputs an indicator function of its boundary. Therefore,

use of the boundary operator in (3) allows us to fix the path

boundary and succinctly express the Type II constraints for

the minimal path problem. We note that this formulation

of the minimal path problem is not new. For example, Pa-

padimiriou [11] establishes the minimal path problem as

the optimization of (2) with respect to (3) and proceeds to

derive Dijkstra’s algorithm as a particular optimization of

these equations.

In order to pass from minimal paths to minimum-weight

surfaces, we must increase the dimensionality of the above

formulation. Fortunately, the dimensionality of the mini-

mal path problem may be increased simply by using the

dimension-appropriate incidence matrix (boundary oper-

ator) and boundary vector p. This dimension-increased

shortest path problem therefore asks the question: Given the

boundary of a two-dimensional surface (i.e., a closed con-

tour or series of closed contours), find the minimum-weight

two-dimensional surface with the prescribed boundary. As

desired, this is the minimum-weight surface problem with

Type II conditions.

In this dimension-increased problem, the incidence ma-

trix (boundary operator) in question is the edge-face inci-

dence matrix defined as

Be,f =































+1 if the edge borders the face with

coherant orientation,

−1 if the edge borders the face with

anticoherant orientation,

0 otherwise.

(5)

Instead of the lower-dimension boundary vector, p, we now

employ the vector r as an indicator vector of a closed, ori-

ented contour taking values

ri =































+1 if the edge ei belongs to the contour

with coherant orientation,

−1 if the edge ei belongs to the contour

with anticoherant orientation,

0 otherwise.

(6)

4

Therefore, our minimum-weight surface problem is

min
z

Q(z) =
∑

i

wizi, (7)

subject to

Bz = r, (8)

where z is an indicator vector indicating whether or not a

face is present in the minimum-weight surface and wi is

meant to indicate the weights of a face. Since the faces

in the dual lattice correspond to edges in the primal lattice

(where the image data is located), (1) may be used to pro-

duce the set of face weights.

2.3. Optimization

Dijkstra’s algorithm provides a fast, specialty method

for optimizing the shortest path problem of (2) subject to

(3). However, a generic linear programming optimization

scheme could alternately be applied to (2) and (3) despite

the fact that the solution y is strictly binary valued. The rea-

son that this integer programming problem may be solved

exactly with linear programming is due to the fact that

the node-edge incidence matrix is always totally unimod-

ular [11]. Recall that a matrix is totally unimodular when

the determinant of all submatrices takes one of the values

{−1, 0, 1}. Using a totally unimodular matrix as the con-

straint matrix for a linear programming problem (with an

integer-valued right hand side) will always produce integer-

valued solutions [11].

We would like to solve the minimum-weight surface

problem described by (7) and (8) with a generic linear pro-

gramming method, but there are two important questions

that must first be addressed: 1) What are the conditions

under which a given r will produce a solution? 2) Is the

edge-face incidence matrix of (5) totally unimodular? The

answer to these questions is the subject of the following two

sections.

2.3.1 Feasibility

We begin by formally stating that the boundary of a bound-

ary is zero in terms of the incidence matrices:

AB = 0. (9)

Since r is the indicator vector of a closed contour, we note

that

Ar = 0. (10)

Now, we can make the following statement regarding the

feasibility of finding a solution to (8) given a closed contour,

represented by an r that satisfies (10).

Proposition 1. If the edge-face incidence matrix has m −
n + 1 independent columns and a nonzero vector r satisfies

(10), then (8) is guaranteed to have a solution.

Proof. The node-edge incidence matrix is known to have

a right nullspace of rank m − n + 1 [6]. Since (9) holds,

and the edge-face incidence matrix has m−n + 1 indepen-

dent columns, then the edge-face incidence matrix spans the

right nullspace. In other words, if A r = 0, then r may be

expressed as a linear combination (with constants c) of the

columns of the edge-face incidence matrix r = B c, giving

the proposition.

In the context of image segmentation on a 6-connected

lattice, the conditions of Proposition 1 will hold and there-

fore Proposition 1 settles the issue of feasibility. In a

more general context, the question of feasibility hinges on

whether or not the contour represented by r is a member

of the homology group of the complex. For example, if the

underlying complex were the triangulated surface of a torus,

then an r representing a contour encircling the handle would

not have a feasible solution. This situation is analogous to

the minimal path problem in which two points placed in

separate components of a disconnected graph will not have

a path joining them.

2.3.2 Total unimodularity1

In order to solve the minimum-weight surface problem with

a generic linear programming solver, we must show that

the edge-face incidence matrix in (8) is totally unimodular.

Unfortunately, Okada [10] has given examples of edge-face

incidence matrices that are not totally unimodular. Conse-

quently, we must demonstrate that the structures likely to be

used in computer vision have a totally unimodular edge-face

incidence matrix. As before, the structure that we are pri-

marily interested in is the 6-connected cellular lattice. Our

strategy for proving total unimodularity is to introduce two

operations on a complex, show that they do not affect the

total unimodularity of the edge-face incidence matrix and

1 This note was added post-publication on 9/13/06 and amended on

11/26/08 by the author — The text within the document is reproduced as

published. The topic of total unimodularity is not correctly handled in

this section. The issues are: 1) Total unimodularity of the constraint ma-

trix is mischaracterized as both sufficient and necessary for a constraint

of the form (8) to guarantee an integral solution. In fact, total unimodu-

larity is simply sufficient, but not necessary to guarantee an integral so-

lution in the presence of a constraint of this form. 2) The proofs of to-

tal unimodularity for the lattice do not prove this property, since they

are predicated on the (false) premise that total unimodularity is preserved

via elementary matrix operations. The elementary matrix operations pre-

serve unimodularity, but not total unimodularity. However, the two op-

erations introduced do preserve orientability, and therefore show that the

lattice is orientable. 3) The edge-face incidence matrix of the lattice is

not, in fact, totally unimodular (thanks to Vladimir Kolmogorov for il-

luminating this point). Despite the aforementioned troubles with this

section, the primary conclusion is still correct, for reasons that are ex-

plained in the upcoming TPAMI version of this paper, available online

at: http://cns.bu.edu/∼lgrady/grady2009minimal.pdf.

Namely: On the lattice, minimizing (7), subject to the constraint (8) is

guaranteed to produce an integer solution when using Linear Program-

ming.

5

http://cns.bu.edu/~lgrady/grady2009minimal.pdf

(a) Untwisted strip (b) Incidence matrix (c) Möbius strip (d) Incidence matrix

Figure 2. A linear programming approach may be used to solve the minimum-weight surface problem if the edge-face incidence matrix is

totally unimodular. Recall that “total unimodularity” refers to the property of a matrix such that each square submatrix has determinant

equal to det = {−1, 0, 1}. As illustrated here, total unimodularity of the edge-face incidence matrix depends on the orientability of the

underlying complex [6]. a) A triangulation of an untwisted strip. Note that the larger, darker edge, e1, on both ends of the strip is considered

attached (without a twist). b) The edge-face incidence matrix of the untwisted strip is totally unimodular. c) Triangulation of a Möbius

strip. Note that the edge, e1, on both ends of the strip is twisted and attached. This twist is reflected by the orientation of the right e1 from

(a) to (c) to reflect the twist. d) The edge-face incidence matrix of the Möbius strip of Figure (c) is not totally unimodular. The shaded

submatrix formed by edges {e1, e2} and faces {fA, fB} has determinant equaling two, unlike the orientable case represented in (b).

then note that the 6-connected lattice (among other struc-

tures) may be built from these two operations.

Consider the operation face subdivision to be de-

fined as the decomposition of face fa into faces {f1, f2}
such that the column corresponding to fa in B equals the

sum of the columns corresponding to f1 and f2 and only

one of {f1, f2} has a nonzero entry for each row (prior to

the addition of the new edge). The face subdivision pro-

cess additionally requires that at least one new edge must

be added, with the condition that the new edges are “inter-

nal”, i.e., the rows corresponding to the new edges are zero

everywhere except in the columns f1 and f2, and that the

entries in those two columns have opposite sign. The oper-

ation add spanning face is defined as the addition of

a new face to the complex, such that its column is the sum

of existing face columns with the coefficients {−1, 0, 1}.

Proposition 2. Given a complex with a totally unimodular

edge-face matrix, the operations of face subdivision

and add spanning face will produce a complex with

a totally unimodular edge-face incidence matrix.

Proof. Consider the following elementary row/column op-

erations: 1) transposition (exchange of two rows/columns),

2) change in sign of a row/column, 3) adding to the ele-

ments of a row/column the corresponding elements of an-

other row/column multiplied by an integer. Note that each

of these elementary operations corresponds to multiplica-

tion of the matrix by a totally unimodular matrix and that

the product of two totally unimodular matrices is another

totally unimodular matrix [6]. We now proceed to show that

the elementary operations above may be used to reduce the

two operations to addition of a column of zeros or addition

of a row and column with a single nonzero entry belong-

ing to the set {−1, 1}. Clearly, either addition to the matrix

would not affect the total unimodularity of the matrix.

By definition of add spanning face, the new col-

umn is the generation of previous columns and may there-

fore be cancelled (i.e., reduced to zero) by existing columns

using the elementary operations defined above.

The face subdivision operation requires two

parts. First, since the internal edges have zero entries out-

side of f1 and f2 and because each row of {f1, f2} has at

most one nonzero entry, a row corresponding to an internal

edge may be used to cancel all rows corresponding to nonin-

ternal edges. Second, since the entries of the internal edges

have opposite signs, one column may now be used to cancel

the other. The remaining column has nonzero entries only

on internal edge rows and therefore one row (internal edge)

may be used to cancel the other rows, leaving a row and a

column with a single nonzero entry with value {−1, 1}.

Clearly the 6-connected lattice may be generated with

the above operations by starting with a cube (zero faces)

and progressively subdividing it into a lattice on the surface

of the cube. Spanning faces may then be used internally to

the cube (followed by subdivision) to generate the lattice.

Intuitively, the issue of total unimodularity of the edge-

face incidence matrix rests on whether or not the faces rep-

resent an orientable manifold [6]. Note that the terms “ori-

ented” and “orientable” refer to different properties. The

term “oriented” indicates that a sense of direction has been

given to each simplex, while “orientable” indicates that the

surface is torsion-free in the topological sense. To illustrate

the issue of orientability, Figure 2 compares the edge-face

incidence matrix for a triangulated Möbius strip with the

triangulation of a standard (i.e., non-twisted) strip. If our

underlying complex is nonorientable (e.g., a triangulated

Möbius strip or Klein bottle), then the underlying edge-face

6

(a) (b) (c) (d) (e) (f)

Figure 3. Synthetic examples to illustrate correctness. Renderings of the original object (with the input contours) are shown, along with

the algorithm outputs. The input volumes all had black voxels indicating voxels belonging to the object and white voxels indicating

background. The white stripe in each of the rendered views shows the input contour(s). In the solution visualizations, black dots are plotted

at the center of the black (object) voxels and faces are shown to indicate the computed surface. (a,b) A sphere with an input contour along

a parallel. Note that, unlike 2D intelligent scissors, a single boundary input (contour) is sufficient to define a solution. (c,d) A sphere

with input contours at two parallels of different heights. (e,f) A lunchbox shape with a handle on the top and a medial contour input. The

algorithm will correctly find minimal surfaces with topological changes.

incidence matrix is not totally unimodular. Fortunately, for

purposes of 3D image processing, the 6-connected lattice

(and all structures likely to be used) is orientable and there-

fore has a totally unimodular edge-face incidence matrix, as

shown in Proposition 2.

2.4. Algorithm summary

Having proved Propositions 1 and 2, we can see that our

generalization of the shortest path problem to the minimum-

weight surface problem may be solved through the appli-

cation of a generic linear programming solver. This lin-

ear programming problem inputs a closed contour (or series

of closed contours) and returns a minimum-weight surface.

Since closed contours are the output of standard (2D) intelli-

gent scissors, the outputs of the 2D intelligent scissors gives

inputs for a 3D intelligent scissors. Alternately, another 2D

segmentation algorithm could also be used to produce the

inputs to the minimum-weight surface problem.

One implementation detail must be mentioned. The

shortest path optimization of (2), (3) must include two equa-

tions for each edge in order to reflect the possibility that

a path could traverse that edge in either direction — each

undirected edge is broken into two directed edges. This

same construction must be followed in the formulation of

the minimum-weight surface problem of (7), (8). In this

problem, each face must be replicated as two faces with op-

posite orientation. Note that a pair of the same faces with

opposite orientation have identical entries in the edge-face

incidence matrix, except for a sign change. Explicitly in-

cluding faces of both orientations leaves us with linear pro-

gramming problem with 6(k+1)k2 equations for a k×k×k

lattice.

We may summarize the entire algorithm as follows:

1. Obtain an oriented closed contour on one or more

slices through an outside algorithm (e.g., 2D intelli-

gent scissors). This contour is represented in (8) by

vector r.

2. Define face weights from the image content using (1).

Note that “outside” faces must be assigned to an arbi-

trary value — we have employed w = 0.5

3. Use a generic linear programming solver to minimize

(7) subject to (8) using the r defined in step one and

the edge-face incidence matrix defined in (5).

4. The solution vector z indicates the faces that form

the 2D minimum-weight surface separating the 3D re-

gions, given the prescribed boundaries.

3. Results

In the previous sections, we generalized the (2D) shortest

path problem with Type II constraints to the analogous (3D)

minimum-weight surface problem with Type II constraints.

Therefore, a natural extension of intelligent scissors to 3D

has been provided. In this section, our goal is to verify the

correctness of the algorithm on synthetic data and then to

demonstrate its application to the segmentation of 3D data.

3.1. Correctness

We begin with three examples to demonstrate correct-

ness. First, we use the algorithm to segment a black sphere

(in a white background), given an initial contour around one

parallel. Secondly, we segment the same sphere using a

boundary consisting of contours around two parallels (i.e., a

contour given on two slices). Finally, we segment a “lunch-

box” shape given a medial contour. This experiment shows

that the algorithm correctly handles topological changes.

Figure 3 shows the results of these three experiments,

verifying the correctness of the algorithm. Figure 3(a)

shows that a single closed contour is sufficient to define

7

Figure 4. Application to segmentation of 3D data. In both studies, the green/gray contours were placed on the left and right slices and

the intermediate yellow/white contours represent the minimum-weight surface between these contours. This figure demonstrates that the

algorithm behaves as expected for a minimal surface approach to 3D segmentation. Top: SPECT cardiac data. Bottom: CT cardiac data.

the boundary of a surface, in contrast to the shortest path

problem in which two points are necessary to define a

path. A similarity with the shortest path problem is that

the minimum-weight surface may not be unique.

We stress that the minimum-weight surface will not nec-

essarily equal the solution to the minimal surface problem

in continuous, Euclidean space. For example, the solution

to the continuous minimal surface is a catenoid when given

a boundary of two, identical, closed contours at different

heights. In contrast, the minimum-weight surface is a cylin-

der when the underlying complex is a 6-connected graph.

This contrast between the discrete and continuous domains

is analogous to the fact that the shortest path on a lattice will

not necessarily be the same as a straight line in the plane.

3.2. Real data

In this section we illustrate the application of minimum-

weight surfaces to the segmentation of real data. Minimum-

weight surfaces with Type I boundary conditions have

been previously applied to image segmentation via graph

cuts [2]. Therefore, we simply illustrate the use of our

method for computing minimum-weight surfaces with Type

II boundary conditions in the context of image segmenta-

tion (i.e., as a 3D extension of intelligent scissors). Two

3D datasets were used in these experiments — SPECT car-

diac data and CT cardiac data. Type II boundary conditions

(closed contours) were generated using standard intelligent

scissors on two slices of each dataset, and we computed

the minimum-weight surface that had these contours as a

boundary. Figure 4 shows the result of these experiments.

4. Conclusion

The increasing use of minimum-weight surfaces for seg-

mentation in 3D, and ubiquity of shortest path problems in

computer vision, led us to define an algorithm for finding

exact, minimum-weight surfaces in 3D weighted graphs.

In contrast to the max-flow/min-cut approach to finding

minimum-weight surfaces by defining Type I boundary

conditions, our algorithm finds minimum-weight surfaces

through the specification of Type II boundary conditions.

Both Type I and Type II boundary conditions find continu-

ing application in 2D for the computation of shortest paths.

We have shown that it is possible to use a generic linear pro-

gramming solver to find the minimum-weight surface un-

less the image is defined on an unusual underlying complex

(e.g., a Möbius strip) rather than a standard, 6-connected,

lattice. A natural application of our results is the exten-

sion of the powerful intelligent scissors/live wire approach

to three dimensions. An attractive feature of this 3D exten-

sion of intelligent scissors is that the output given by stan-

dard (2D) intelligent scissors provides an input for the com-

putation of a minimum-weight surface.

Future work will the develop along three lines: 1) Search

for a specialty linear programming solver, analogous to Di-

jkstra’s algorithm for the shortest path problem, 2) Appli-

cation of the 3D minimum-weight surfaces to extend other

shortest path-based computer vision algorithms to higher

dimension, 3) Extension of this approach to find minimum-

weight hypersurfaces in higher dimensional complexes.

References

[1] B. Appleton and H. Talbot. Globally optimal surfaces by

continuous maximal flows. IEEE PAMI, 28(1):106–118, Jan.

2006. 2

[2] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal

boundary & region segmentation of objects in N-D images.

In Proc. of ICCV 2001, pages 105–112, 2001. 2, 3, 8

[3] L. Cohen and T. Deschamps. Grouping connected compo-

nents using minimal path techniques. Application to recon-

struction of vessels in 2D and 3D images. In Proc. of CVPR

2001, volume 2, pages 102–109. IEEE Comp. Soc., 2001. 1

[4] A. X. Falcão, J. K. Udupa, S. Samarasekera, S. Sharma, B. H.

Elliot, and R. de A. Lotufo. User-steered image segmentation

8

paradigms: Live wire and live lane. Graphical Models and

Image Processing, 60(4):233–260, 1998. 1, 2, 3

[5] D. Kirsanov. Minimal Discrete Curves and Surfaces. PhD

thesis, Harvard University, Cambridge, MA, 2004. 2

[6] S. Lefschetz. Algebraic Topology, volume 27. American

Math. Soc. Col. Pub., 1942. 2, 3, 4, 5, 6

[7] C. Mattiussi. The finite volume, finite element and finite

difference methods as numerical methods for physical field

problems. In Advances in Imaging and Electron Physics,

pages 1–146. Academic Press Inc., April 2000. 2, 3

[8] F. Morgan. Geometric Measure Theory. Academic Press,

London, 3rd edition, 2000. 1, 2

[9] E. Mortensen and W. Barrett. Interactive segmentation with

intelligent scissors. Graphical Models in Image Processing,

60(5):349–384, 1998. 1, 2, 3

[10] S. Okada. On mesh and node determinants. Proc. of the IRE,

43:1527, 1955. 5

[11] C. H. Papadimitriou and K. Steiglitz. Combinatorial Opti-

mization. Dover, 1998. 2, 4, 5

[12] S. V. Porter, M. Mirmehdi, and B. T. Thomas. A shortest

path representation for video summarisation. In Proc. of 12th

ICIAP, pages 460–465. IEEE Comp. Soc., Sept. 2003. 1

[13] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. IEEE PAMI, 22(8):888–905, Aug. 2000. 3

[14] J. N. Tsitsiklis. Efficient algorithms for globally optimal tra-

jectories. IEEE Trans. on Automatic Control, 40(9):1528–

1538, Sept. 1995. 1

9

