Multilabel Random Walker Image Segmentation Using Prior Models

Leo Grady
Leo.Grady@siemens.com

Problem
An image with many objects requires seeding in each object

Main idea
Build intensity model, formulate as quadratic energy term:

\[\lambda_i^s \]

\(x_i^s \) probability that node \(v_i \) belongs to label \(s \) (of \(k \) total labels/objects)
\(\lambda_i^s \) prior probability that the intensity at node \(v_i \) belongs to label \(s \)

In vector notation:

\[\left(\sum_{q=1}^{k} \lambda_i^q \right) x_i = \lambda_i^s \]

Joint energy minimization with original random walker:

\[E_{prior}^s(x^s) = \sum_{q=1, q \neq s}^{k} x^q \Lambda_c x^q + (x^s - 1)^T \Lambda_c (x^s - 1) \]

\[E_{Total}^s = E_{random \ walker}^s + \gamma E_{prior}^s \]

Minimum achieved by solving a SPD system of linear equations

Graph interpretation
Equivalent to graph modification

Graph interpretation
Equivalent to graph modification

Properties
Finds weak (missing) boundaries
For uniform or pure noise, finds central partition

Examples
Provides confidence of segmented pixel/voxel

Results
Finds weak (missing) boundaries
Provably robust to noise
Provides confidence of segmented pixel/voxel

Examples
Finds weak (missing) boundaries
Provably robust to noise
Provides confidence of segmented pixel/voxel

Examples
Finds weak (missing) boundaries
Provably robust to noise
Provides confidence of segmented pixel/voxel