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Abstract

The recently introduced random walker segmentation al-
gorithm of [14] has been shown to have desirable theo-
retical properties and to perform well on a wide variety
of images in practice. However, this algorithm requires
user-specified labels and produces a segmentation where
each segment is connected to a labeled pixel. We show
that incorporation of a nonparametric probability density
model allows for an extended random walkers algorithm
that can locate disconnected objects and does not require
user-specified labels. Finally, we show that this formula-
tion leads to a deep connection with the popular graph cuts
method of [8, 24].

1 Introduction

Traditional machine learning and statistical pattern
recognition systems [15, 3] typically make decisions about
test points without making use of their relationship to each
other. Due to the spatial nature of an image, such ap-
proaches are often inappropriate and their application re-
sults in noisy segmentations with many small, fragmented,
pieces of an object scattered through the image. This is why
the computer vision community has trended toward spatial
algorithms, such as normalized cuts [22], graph cuts [8],
watersheds [20], active contours [16], level sets [21] and
the random walker algorithm [14]. However, in some seg-
mentation scenarios, the objects of interest may be reason-
ably characterized by an intensity (feature) distribution. For
such a situation, it is important to be able to integrate inten-
sity information into a spatial algorithm.

The recently introduced random walker segmentation al-
gorithm of [14] has been shown to have desirable theoreti-
cal properties and perform well on a wide variety of images
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in practice. The algorithm was designed to be a general-
purpose interactive segmentation tool, such that a user could
mark a few pixels with an arbitrary number of labels and
expect a quality result, regardless of the data set or the seg-
mentation goal. Using this technique, a segmentation is ob-
tained for a pixel by computing, for each label, the proba-
bility that a random walker starting its walk at that pixel first
reaches a seed with that label. The pixel is then assigned the
label with the greatest probability. A user-specifiedseed is
a pixel that has been given a labeling by the user. It was
shown in [14] that the probabilities may be computed an-
alytically by solving a sparse, symmetric, positive-definite,
system of linear equations instead of performing a random
walk simulation.

Specifically, it was shown in [14] that the random walker
algorithm has the following properties:

1. The solution for the probabilities is unique.

2. The expected value of the probabilities for an image of
pure noise, given by identically distributed (not neces-
sarily independent) random variables, is equal to those
obtained on a uniform image.

3. The expected value of the probabilities in the presence
of random, uncorrelated weights is equal to the proba-
bilities obtained by using weights equal to the mean of
each random variable.

However, this algorithm has three properties that could
be problematic for certain segmentation tasks: each seg-
ment must be connected to a seed, only intensitygradients
were used instead of employing absolute intensity informa-
tion, and the algorithm requires user-specified seeds. For
many segmentation tasks, these properties are desirable. Ig-
noring absolute intensity information increases robustness
to quantization, shifted or inverted intensities and requiring
connectedness of each segment to a seed prevents a noisy,
scattered segmentation of small regions. However, segmen-
tation of an image containing objects of interest that have
a great many disconnected pieces is tedious for the user,



since a seed must be placed inside each disconnected piece.
If a consistent intensity profile characterizes an object of
interest, then this information should be incorporated into
the segmentation. Finally, we may have an object intensity
model, but user input is unavailable. For these cases, the
present work describes anextended random walkeralgo-
rithm that uses an intensity model obtained eithera priori
or via a density estimation from user-input seeds. For clar-
ity and simplicity of exposition, we develop the present ex-
tension in the context of images with a single channel (here-
after referred to asintensity) and user-specified seeds. How-
ever, we stress that the algorithm applies equally to multi-
channel image and an absence of user interaction (assuming
a model is available).

Figure 1 illustrates the goal of this work — joining an
aspatial algorithm (represented by the density estimation)
with the spatial random walkers algorithm. The user has
supplied two groups of seeds, representing the “blood cell”
label and the “background” label. Applying the random
walkers algorithm yields a correct segmentation of the cell
within which the seeds were placed, but incorrectly iden-
tifies the other cells. In contrast, using a simple density
estimation of the two groups finds pieces of the cells and
background, but ultimately yields a fractured segmentation
that lacks spatial cohesion. Our goal is to combine the in-
tensity profiling and long-range aspects of the density es-
timation approach with the spatial cohesion of the random
walker algorithm in a principled way that produces the cor-
rect result, despite variability of the intensity values present
in the image.

The mixing of statistical information into a spatial ap-
proach in not new in the computer vision literature. For en-
ergy methods of segmentation, this effect is often achieved
naturally by adding energy terms and performing minimiza-
tion on the total energy (e.g., [18]). However, some spatial
algorithms, such as the watershed transform [20], do not
easily admit the incorporation of image priors. The novelty
in this work is to extend the success of the random walker
approach by employing image priors to find disconnected
pieces of an object and to remove the necessity of user in-
teraction.

The most closely related approach to the present work
is the graph cuts method of [9, 8] with a “data term” rep-
resenting the priors. The graph cuts algorithm may also
be used to find a minimum cut between user-specified seed
groups [7]. As will be discussed in further detail below, the
random walker and graph cuts algorithms obtain a segmen-
tation through minimization of the same functional, with
the difference that the random walker algorithm minimizes
the functional over the space of real numbers and the graph
cuts algorithm performs the minimization over the set of
integers. Although this difference might appear slight at
first, the segmentations obtained from the two algorithms

have different properties and may behave differently on the
same image. Specifically, the random walkers algorithm has
provable robustness to noise, extends easily (and exactly)to
an arbitrary number of labels and offers a confidence value
that a given node belongs to a particular segment (as repre-
sented by the probability). Furthermore, as noted by Shi and
Malik [22], minimum cuts has a tendency to find a small cut.
The reason for this is that graph cuts will find the smallest
cut between the seeds (terminals), resulting in a tendency
to find the cut that barely encloses the seeds in situations
where the desired boundary is weakly defined or few seeds
are placed. Since the random walker algorithm is not seek-
ing the smallest boundary, it does not suffer from this “small
cut” problem. However, the graph cut algorithm is guaran-
teed to give the minimum cut between two groups of labeled
nodes.

In our approach, we treat an image (or volume) as a
purely discrete object — a graph with a fixed number of ver-
tices and edges. Each edge is assigned a real-valued weight
corresponding to the likelihood that a random walker will
cross that edge (e.g., a weight of zero means that the walker
may not move along that edge). Formulation of the algo-
rithm on a graph allows the application of the algorithm to
surface meshes or space-variant images [23, 13]. Regard-
less of the dimensions of the data, we will use the termpixel
throughout this paper to refer to the basic picture element in
the context of its intensity values. In contrast, the termnode
will be used in the context of a graph-theoretical discussion.

The random walker formulation will first be reviewed
and then extended to incorporate intensity priors. We then
discuss connections to the graph cuts algorithm and pro-
vide implementation details of the algorithm. Results are
displayed for several images and we conclude with a dis-
cussion.

2 Development

The segmentation is formulated on a weighted graph,
where each node represents a pixel or voxel. Agraph
is a pair G = (V,E) with verticesv ∈ V and edges
e ∈ E ⊆ V × V . An edge,e, spanning two vertices,vi

andvj , is denoted byeij . Let n = |V | andm = |E| where
| · | denotes cardinality. Aweighted graph has a value (typ-
ically nonnegative and real) assigned to each edge called a
weight. The weight of edgeeij , is denoted byw(eij) or
wij . Thedegree of a vertex isdi =

∑

w(eij) for all edges
eij incident onvi.

2.1 Review of random walker formulation

Given a weighted graph, a set of marked (labeled) nodes,
VM , and a set of unmarked nodes,VU , such thatVM ∪VU =
V andVM ∩ VU = ∅, we would like to label each node

2



(a) Original image (b) Density estimation only (c) Random walkers only (d) RW with density est.

Figure 1. Gray markers indicate user-specified seeds specif ying cells and background. In the output,
white regions correspond to pixels determined to be “cell” a nd black regions to pixels determined to
be “background”. The random walkers algorithm by itself is c apable of finding a spatially coherent
object, but unable to locate similar, disconnected, pieces . A simple density estimation classifies
disconnected pixels, but yields a fragmented, spatially in sensitive, segmentation. Use of density
estimation as a set of priors to the random walker algorithm r esults in a segmentation that overcomes
the limitation of both individual approaches. This image wa s processed using the parameters:
β = 500, γ = 1e−2, σ = 100.

vi ∈ VU with a label from the setG = {g1, g2, . . . , gk}
having cardinalityk = |G|. We term a node,vi ∈ VU , as
free because its label is not initially known. Assume that
each nodevi ∈ VM has also been assigned a label,yi ∈ G.
The random walker approach to this problem given in [14]
is to assign to each node,vi ∈ VU , the probability,xs

i ,
that a random walker starting from that node first reaches
a marked node,vj ∈ VM , assigned to labelgs. The seg-
mentation is then completed by assigning each free node
to the label for which it has the highest probability, i.e.,
yi = maxsv

s
i . Note that the values foryi, if vi ∈ VM ,

are given by user-interaction.
It is known [14, 11] that the minimization of

Espatial = xsT Lxs, (1)

for an n × 1, real-valued, vector,xs, defined over the set
of nodes (i.e., a cochain) yields the probability,xs

i , that a
random walker starting from node,vi, first reaches a node
vj ∈ VM with labelgs (set toxs

j = 1), as opposed to first
reaching a node,vj ∈ VM , with labelgq 6=s (set toxj = 0),
whereL represents the combinatorial Laplacian matrix [17]
defined as

Lvivj
=











dvi
if i = j,

−wij if vi andvj are adjacent nodes,

0 otherwise.

(2)

The notationLvivj
is used to indicate that the matrixL is

indexed by verticesvi andvj .
By partitioning the Laplacian matrix into marked (i.e.,

pre-labeled) and unmarked (i.e., free) blocks

L =

[

LM B

BT LU

]

, (3)

and denoting an|VM | × 1 indicator vector,fs, as

fs
j =

{

1 if yj = gs,

0 if yj 6= gs,
(4)

the minimization of (1) with respect toxs
U is given by the

system
LUxs

U = −Bfs, (5)

which is a sparse, symmetric, positive-definite, system of
linear equations. By virtue ofxi being a probability

∑

s

xs
i = 1 ∀i, (6)

only k − 1 linear systems must be solved, since the final
system may calculated for simply via (6). Note that (6) may
also be derived directly or by recourse to superposition in a
circuit analogy [14]. Although we are using random walk-
ers for our segmentation, the deep connection with potential
theory allows us to simply and, more importantly, determin-
istically, solve a system of linear equations to find the prob-
abilities. The mathematics above reveal one property of the
random walker algorithm: In the absence of labeled points
(i.e., VM = ∅), the probabilities are undefined. There-
fore, in the original work, this algorithm was presented as
a strictly semi-automated segmentation algorithm. We will
now present how the incorporation of priors into the above
framework yields a segmentation algorithm that need not
have any user interaction.
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2.2 Label priors

Assume we have a set of real-valued, nodewise priors,
λs

i , that represent the probability density that the intensity
at node,vi, belongs to the intensity distribution of labelgs.
Assuming that each label is equally likely, Bayes’ theorem
gives the probability that a node,vi, belongs to labelgs as

xs
i =

λs
i

∑k
q=1 λ

q
i

. (7)

We may write (7) in vector notation as

(

k
∑

q=1

Λq

)

xs = λs, (8)

whereΛs is understood to be a diagonal matrix with the
values ofλs on the diagonal. In MATLAB notation,Λ =
diag (λs).

It is clear that (8) is the minimum energy distribution for
theaspatial functional1

Es
aspatial(x

s) =

k
∑

q=1,q 6=s

xqT Λqxq+(xs − 1)
T

Λs (xs − 1) .

(9)
These energies may be combined into a single functional

with the introduction of a free parameterγ as

Es
Total = Es

spatial + γEs
aspatial, (10)

and minimized with respect to the free (i.e., not pre-labeled)
nodal probabilities. Without loss of generality, assume for
the moment that there are no pre-labeled nodes (i.e., allxi

are free). The minimum energy of (10) is obtained whenxs

satisfies the solution to2

(

L + γ

k
∑

r=1

Λr

)

xs = λs. (11)

Note that, despite the singularity ofL [2], the combined
matrix in (11) is guaranteed to be positive definite (and
therefore nonsingular), sinceL is positive semi-definite and
the diagonal matrices are strictly positive definite. For this
reason, the incorporation of priors into the formulation cir-
cumvents the problems associated with equation (5) that de-
manded user-specified labels in the original work. However,

110/19/09 LJG: This equation is reproduced as printed, but
should instead readEs

aspatial
(xs) =

Pk
q=1,q 6=s xsT Λqxs +

(xs
− 1)T Λs (xs

− 1). Thanks to Rui Shen for calling this to my at-
tention.

211/13/07 LJG: This equation is reproduced as printed, but should in-

stead read
“

L + γ
Pk

r=1 Λr
”

xs = γλs. Thanks to Sebastian Nowozin

for calling this to my attention.

if desired, user-specified seeds may also be incorporated by
solving the system3

(

LU + γ

k
∑

r=1

Λr
U

)

xs
U = λs

U + Bfs, (12)

for the unlabeled nodesVU .
Compare (11) for a lattice with known priors and (5) for a

lattice modified to include an extra (labeled) node for each
label, gs, that is connected to each node in the lattice,vi,
with weight equal toγλs

i , as depicted in Figure 2. For these
cases, (11) and (5) are the same withBfs = λs andLU

is simply the Laplacian for the lattice. The additions to the
diagonal ofL representing the lattice in (11) is residue from
the deletion of the marked (floating) nodes. Therefore, the
incorporation of priors (in (11)) yields the same solution as
would be obtained for the random walker probabilities on
an augmented graph. It is more convenient to consider the
augmented graph, since the inclusion of priors may now be
treated in the original, random walker, framework. Specifi-
cally, the proofs given in [14] concerning the robustness and
behavior of the random walker algorithm also apply when
priors are included, since the inclusion of priors is equiv-
alent to the original random walker problem solved on the
augmented graph of Figure 2. Note that use of pre-labeled
nodes with priors also leads to solving (5) on the augmented
graph. To be clear, the solution obtained through incorpo-
ration of priors into the total energy of (10) is equivalent to
the solution to just the original random walkers algorithm
on the augmented graph in Figure 2.

We note that, because of the identification of the mini-
mization of (10) with the general random walker problem
in [14], we are guaranteed that the solutions,xs

i , found for
each label,gs, sum to unity as required by a probability, i.e.,
∑

s xs
i = 1. The unity constraint for each node indicates

that onlyk − 1 solutions to (11) are required.
The construction of a graph with additional nodes, as de-

picted in Figure 2, as well as the development in this sec-
tion, bears a close resemblance to the construction of the
graph cuts problem with the inclusion of nodewise priors as
detailed in [1, 9, 8]. In the terminology of [8], our weights
wij between nodesvi andvj are attached toN-linksand the
γλs

i are attached toT-links. There are, however, three no-
table differences between these two formalisms. First, the
algorithm described in the present work minimizes the en-
ergy in (10) over the field of real-valued probabilities in-
stead of binary values. Although this may appear to be
an inconsequential difference, a unique solution is guar-
anteed for a real-valued solution (since the matrix in (11)
is nonsingular), while it is not guaranteed for a binary so-

311/13/07 LJG: This equation is reproduced as printed, but should in-

stead read
“

LU + γ
Pk

r=1 Λr
U

”

xs
U

= γλs
U

− Bfs. Thanks to Sebas-

tian Nowozin for calling this to my attention.
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Figure 2. Mathematically, the use of intensity
priors is equivalent to using k labeled, “float-
ing” nodes that correspond to each label and
are connected to each node. Note the similar-
ity between this construction and that of the
graph cuts algorithm in [9, 8]. See text for a
comparison.

lution. Another difference is that, as shown in [8], using
graph cuts to minimize the energy with more than two la-
bels does not guarantee an exact minimum, only a solution
within a bound of the true minimum. In contrast, multi-
ple labels are handled naturally in the present formulation,
yielding the desired probabilities exactly regardless of the
number of labels that are used. Finally, with graph cuts, the
T-link weights are typically taken aslog(λ) due to the origi-
nal MAP formulation of the problem [1, 9, 6] as opposed to
the sum of energy terms derivation that is employed in the
present work.

3 Algorithmic details

The algorithm may be described in four steps which will
be detailed in this section:

1. With a prior model of label intensities (obtained possi-
bly through estimation from user interaction), generate
the probability,λs

i , that each node,vi, belongs to each
label,gs, based on its intensity,Ii.

2. Generate edge weights,wij , between connected nodes
vi andvj .

3. Solve the system of equations defined in (12) for the
probabilities,xs

i , corresponding to each label,gs. This
need only be donek − 1 times, since the final set of
probabilities may be calculated via the unity sum con-
dition, i.e.,xk

i = 1 −
∑

s<k xs
i .

4. Assign each node,vi, to the label,gs, with highest
probability,xs

i , i.e.,yi = maxs(x
s
i ).

3.1 Prior model

Segmentation tasks are often specified in the context of a
particular problem domain. In such a situation, the number
of desired labels is knowna priori and a probability den-
sity estimation may be generated from training (i.e., pre-
labeled) images via a wide array of techniques [3].

Although many advanced techniques are available for
density estimation, we used a simple kernel estimation to
produce the probability densities. Assume that we have
a set of training nodes, with intensities denotedT =
{t1, t2, . . . , tc}, and corresponding labels, denotedR =
{r1, r2, . . . , rc}, wherec = |T | = |R| is the number of
training points andri ∈ G. Note that the training points
may be defined with prior training images, or may be given
interactively by a user. Specifically, we quantized each im-
age intensity to 256 levels (to preserve reuse of parameters
across image modalities) and used a Gaussian kernel to pro-
duce the densities corresponding to each of thek labels.

The probability,λs
i , that nodevi is generated from the

distribution corresponding to labelgs is generated through

λs
i =

1

Zs

∑

q,rq=gj

e
(Ii−tq)2

σ , (13)

whereσ is a free parameter andZs is a normalizing constant
for labelgs equal to

Zs =

255
∑

p=0

∑

q,rq=gs

e
(p−tq)2

σ . (14)

In practice, a normalized histogram is generated from
the Gaussian kernels for each label and the probabilities are
simply read off for each test intensity. Estimating densities
for multidimensional images and a large number of training
points would require more advanced methods of density es-
timation in order to be practical.

Of course, an intensity profile may not be the most ap-
propriate descriptor for some segmentation tasks. We focus
here on an intensity description purely for the simplicity of
algorithm exposition — generating distributions based on a
texture analysis or filtering may be better suited for some
segmentation problems.

3.2 Choosing weights

Although several functions exist for mapping nodal in-
tensities to connecting weights (e.g., see [4] for an excellent
treatment), we chose the ubiquitous function [19]

wij = e−β(Ii−Ij)
2

. (15)

In practice, we employ

wij = e
β
ρ
(Ii−Ij)

2

+ ǫ, (16)
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whereǫ is a small constant (we takeǫ = 10−6) andρ is a
normalizing constantρ = max(Ii − Ij),∀ i, j. The purpose
of (16) is to keep the choice ofβ relevant to images of dif-
ferent quantization and contrast, as well as make sure that
none of the weights go identically to zero.

3.3 Numerical solution

As with the original random walker algorithm [14], the
main computational hurdle in the extended version de-
scribed in this work is the solution to the large, sparse, sym-
metric, positive-definite, system of linear equations in (12).
Many methods exist to solve a system of equations [12], al-
though the high memory consumption of most direct meth-
ods (e.g., LU decomposition) precludes practical use in this
situation, except in the case of small images. Instead, itera-
tive methods such as preconditioned conjugate gradient are
more appropriate, due to an acceptable memory consump-
tion and easy parallelization [10, 5].

If the prior distributions were uniform, then
γ
∑k

s=1 Λs = γk
n

I and the addition of this matrix to
L (or LM , if user-defined seeds are used) would be
guaranteed to reduce the (Euclidean) condition number
that is known to affect the convergence of conjugate
gradients [12]. Although the densities will not, in general,
be uniform, we have noticed an empirical improvement in
the convergence of the conjugate gradient method when
applied to (12) over (5).

3.4 Computational complexity

Given a fixed quantization, and a number of training
points and labels that are independent of the number of pix-
els, the density estimation is a constant time operation and
the subsequent assignment of a probability to each node is
O(n).

Solving the system of linear equations defined in (12)
is the main computational hurdle of the algorithm and, in
practice, requires the most time. However, if we employ a
graph of bounded degree,d, on the unlabeled nodes (e.g.,
d = 4 for a 4-connected lattice), then the sparse matrix
multiply employed in each iteration of conjugate gradients
requires no greater thandn operations. Consequently, if we
assume that a fixed number of iterations are employed, then
the solution to the system of equations is performed inO(n)
operations. Because each phase of the algorithm, including
the initial weight assignment and final pixelwise maximum-
likelihood segmentation, are linear time operations, the en-
tire algorithm requiresO(n) operations.

In practice, the entire algorithm (from initial prior and
weight/matrix generation to final label assignment) requires
approximately3 seconds on a256 × 256 image for an Intel
Xeon 2.40GHz with 3GB of RAM.

4 Results

This extension of the work in [14] is best suited to prob-
lems with disconnected objects, where the intensity profile
largely characterizes the desired objects, but the presence
of noise or irregularities results in a need to respect spa-
tial cohesion. A histological example of this type of seg-
mentation task was given above in Figure 1 where the user
would prefer to label only one cell and the background. Al-
though the irregularities in the background and within the
cells would cause a priors-only solution to yield a noisy,
fragmented, segmentation with many errors, use of the spa-
tial energy term from [14] yields a quality segmentation.
Figure 3 shows four examples of medical images that have
been segmentated with our extended random walker algo-
rithm. All of the segmentations in this paper are done using
the same values for the parameters. In each of the images
in Figure 3, the labeled object is disconnected, preventing
straightforward application of [14]. However, a density es-
timation of the intensity is also insufficient to characterize
the objects without introducing significant noise into the fi-
nal segmentation. Although Figure 3 displays results on
medical images, there is nothing inherent about this algo-
rithm that pertains specifically to medical images. In other
words, this algorithm, both the original random walkers and
this extension, is a general purpose segmentation tool that
makes no assumptions about the image type or the segmen-
tation task.

5 Conclusion

Although producing high-quality segmentations on a
wide variety of images, the random walker segmentation
algorithm first presented in [14] has three properties that
could be problematic for certain segmentation tasks: each
segment must be connected to a seed, only intensitygradi-
entswere used instead of employing absolute intensity in-
formation, and the algorithm requires user-specified seeds.
We have shown in this work that the incorporation of a prior
model into the energy minimization yields an extended al-
gorithm that overcomes these problems. Specifically, the
incorporation of priors is most beneficial when the image
consists of many objects bearing a single label that have
similar intensity profiles.

A pixelwise prior model alone is frequently incapable
of producing a quality segmentation, leading instead to a
noisy, fragmented, solution. Without use of spatial cohe-
sion, such an approach results in many tiny, often one or two
pixel, pieces of a segment. Therefore, addition of the spatial
energy term also lends strength to a pointwise, Bayesian,
generative approach to segmentation.

Combination of the aspatial (priors) energy term and the
spatial (random walkers) energy term was shown to yield

6



(a) Ankle (b) Seeds (c) Seg. (d) MR Grey/White matter (e) Seeds (f) Segments

(g) Kidney (h) Seeds (i) Segments (j) CT Cardiac blood pool (k) Seeds (l) Segments

Figure 3. The user-specified labels are indicated by black li nes in the middle figure labeled “seeds”.
The black lines in the “segments” figure indicate segment bou ndaries. Each image had two seed
groups, except for the gray/white matter segmentation, whi ch has three groups (gray matter, white
matter, background). All of the seeds inside the brain are gr ay matter seeds except for the vertical line
in the center of the white matter. Each image was processed us ing the same parameters: β = 500,
γ = 1e−2, σ = 100
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a functional that may be interpreted in the framework of
the random walkers algorithm alone. Namely, each label is
viewed as a “floating” seed node that is connected to every
other node with weight corresponding to the prior density
of the pixel intensity to that label, as illustrated in Figure
2. Therefore, the extended algorithm presented here may be
interpreted in the original random walker formalism with a
simple modification of the graph itself. This realization al-
lows the proofs in [14] on noise robustness, to be applied
without modification to the priors extension. Furthermore,
the graph construction in Figure 2 exactly mirrors the graph
construction employed in the graph cuts algorithm [9, 8]
when a “data term” is employed. This close connection is
not surprising, since the functional minimized to find the
random walker probabilities is identical to the functional
minimized to find the smallest graph cut, with the differ-
ence that the minimization in the case of the random walk-
ers algorithm is performed over the field of real numbers in-
stead of binary values. This difference between the two al-
gorithms, optimization over the reals instead of (binary) in-
tegers, may seem subtle and inconsequential, but it is shown
in [14] that the two algorithms exhibit different properties.
Specifically, the random walkers algorithm does not suffer
from the “small cut” problem of graph cuts, has provable
robustness to noise, extends easily (and exactly) to an arbi-
trary number of labels and yields a probability that a given
node belongs to a segment. In contrast, the graph cut algo-
rithm is guaranteed to give the minimum cut between the
labeled nodes.

Future work includes progression beyond a simple
intensity-based prior and more advanced density estimation.
Given the similarity in construction between this extended
random walker algorithm and the graph cuts algorithm with
a data term of [9, 8], a natural course would be to apply
this algorithm to the problems tackled with that algorithm,
namely image restoration and stereo segmentation.
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