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Outline of talk
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Biological visual sampling
Why has evolution driven this process?

(Hughes, 1977)
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Biological visual sampling
Visual archetecture satisfies the needs of the system
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Biological visual sampling
The “Terrain Theory” of Hughes (1977)

(a) Tree Kangaroo (b) Ground Kangaroo
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Biological visual sampling
Problem: How to apply computer vision techniques to
space-variant images?

(a) 4-Connected (b) 8-Connected (c) Kangaroo
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Biological visual sampling
Approach: Graph theory

Nodes correspond to pixels and node density
corresponds to resolution

• Naturally extends to 3D or data clustering
• Applies to any field defined on nodes (e.g., image

intensity, coordinates)
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Advantages of graph theory
Why should we be interested in graph-theoretic
approaches to vision?

• Recent success using graph theory in computer
vision

• Global-local interactions
• Dimension independent
• Analogies between graphs, matrices, vector

calculus and circuit theory allows transfer of
ideas and intuition
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Graph theory
How to use concepts from calculus on a graph?

A graph is a pair G = (V, E) with vertices (nodes) v ∈ V and edges

e ∈ E ⊆ V × V . An edge, e, spanning two vertices, vi and vj , is

denoted by eij . A weighted graph has a value (typically nonnegative

and real) assigned to each edge, eij , denoted by w(eij) or wij .
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=
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di if i=j,

−w(eij) if eij∈E,

0 otherwise.

di=
∑

eij
w(eij) ∀ eij∈E

L=AT CA
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Graph theory - Circuit analogy

ATy = f Kirchhoff’s Current Law

Cp = y Ohm’s Law

p = Ax Kirchhoff’s Voltage Law
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Graph theory
Allows straightforward translation of computer vision
concepts

(a) Structure (b) Image (c) Edge-detection
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Graph interpolation
Problem: How to interpolate unknown nodal values
between known nodal values?

Answer: Solve the combinatorial Dirichlet Problem
using Dirichlet boundary conditions at the known
values

(a) Graph (b) Circuit – p.13/65



The Dirichlet Problem

Continuous Dirichlet integral

D[u] = 1
2

∫

Ω |∇u|2dV

Laplace equation

∇2u = 0

Combinatorial Dirichlet integral

D[x] = 1
2x

TATCAx

Laplace equation

ATCAx = Lx = 0
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Dirichlet Problem
How are the boundary conditions actually
incorporated?

D[x] =
1

2
xTLx

D[xi] =
1

2

[

xT
b xT

i

]

[

Lb R

RT Li

] [

xb

xi

]

= xT
b Lbxb + 2xT

i RTxb + xT
i Lixi

Lixi = −RTxb
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Does it work?
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Dirichlet Problem - So what?
Connection with anisotropic diffusion
(Perona and Malik, 1990) suggests use for early
vision processing

Diffusion equation
dx
dt

= Lx

Laplace equation

0 = Lx
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Dirichlet Problem
Anisotropic Laplacian smoothing

(a) Original (b) Samples (c) Interpolation
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Space-variant sampling
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Laplace vs. Diffusion

Conclusion

• Steady state vs. transient
• Diffusion requires stopping parameter (i.e., time)
• “Sampling” of Laplace allows more or less

smoothing in different regions
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Isoperimetric Problem
Problem: For a given volume, what shape has the
smallest perimeter?

Enclosing a volume with a boundary may be
considered as a separation of the space.

Segmentation: View image as a discrete geometry
where the image values specify the metric and find the
partitions that satisfy the isoperimetric problem.
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Isoperimetric Problem
For an arbitrary space, the problem is much more
difficult.

Formally, the isoperimetric constant for a space is
given as

h = inf
S

|∂S|

VolS
,

for any subset of points, S.
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Isoperimetric Problem
How to define problem for a discrete geometry
(graph)?

Instead of points, S is a set of nodes.

S = {4, 5}

S = {1, 2, 3}

∂S = {d, e}
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Graph formulation
Define an indicator vector

xi =

{

0 if vi /∈ S,

1 if vi ∈ S.

Note that specification of x defines a partition.

How to define perimeter?

|∂S| = xTLx
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Graph formulation
How to define volume?

Nodal Volume VolS = xTr

Normalized Volume VolS = xTd

Where r is the vector of all ones and d is the vector of

node degree.
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Graph formulation
As a measure of partition quality, define the
isoperimetric ratio as

h(x) =
xTLx

xTd
.

Strategy: Relax x to take real values and use Lagrange
multiplier to perform a constrained minimization of
the perimeter with respect to a constant volume.
Namely, minimize xTLx subject to the constraint

xTd = k.
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Graph formulation
Define the function Q(x) as

Q(x) = xTLx − Λ(xTd − k).

Since L is positive semi-definite (Biggs, 1974), Q(x)

takes minima at critical points satisfying

2Lx = Λd.

Problem: Equation is singular - For a connected

graph, L has a nullspace spanned by r.
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Circuit analogy
Same equation occurs in circuit theory (Branin Jr.,
1966) for a resistive network powered by current
sources. Must ground the circuit in order to find
potentials.

Lx = d L0x0 = d0
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Potentials
When L0x0 = d0 is solved, a set of potentials is assigned to each

node that must be thresholded in order to produce a partition.

Lemma: For any threshold, the set of nodes with potentials lower

than the threshold must be connected.

Proof: Follows from the mean value theorem with positive

sources. – p.30/65



Partitioning algorithm recap

Steps of the partitioning algorithm

1 Generate edge weights based on
image/coordinate/sensor data.

2 Choose a ground node, vg, and form L0, d0.

3 Solve L0x0 = d0 for x0.

4 Choose threshold and divide nodes into the sets
with potentials above and below the threshold.
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Spectral partitioning
Spectral vs. Isoperimetric

• Eigenvector problem vs. system of linear
equations

• If eigenvalue algebraic multiplicity is greater than
unity: Any vector in the subspace spanned by the
eigenvectors is a valid solution.
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Data clustering
The Gestalt clustering challenges of Zahn
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Image processing
Why should this work well?

Image Potentials Segmentation
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Image processing
What is the effect of choosing ground?

– p.35/65



Image processing
How to choose weights?

wij = exp (−β|Ii − Ij|)

We term β the scale

(a) β = 30 (b) β = 50
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Recursive bipartitioning
How to apply isoperimetric partitioning to
(unsupervised) image segmentation?

Recursively apply bipartitioning until the
isoperimetric ratio of the cut (i.e., the partition
quality) fails to satisfy a pre-specified isoperimetric
ratio.
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Recursive bipartitioning
No user interaction - How to automatically choose
ground?

Anderson and Morley (1971) proved that the spectral
radius of L, ρ(L), satisfies ρ(L) ≤ 2dmax. Therefore,
grounding the node of highest degree may have the
most beneficial affect on the numerical solution to
L0x0 = d0.
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Recursive bipartitioning
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Noise analysis
Segmentation of white circle on black background

(a) Additive (b) Multiplicative

(c) Shot – p.40/65



Noise analysis

(a) Additive

Image Iso NcutsNoise

(b) Multiplicative

Image Iso Ncuts

(c) Shot

Image Iso Ncuts
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Other graphs
Because of the flexibility of graph theory, the
isoperimetric segmentation algorithm applies to
general graphs.

(a) 3D graph (b) Space-variant
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Krylov subspaces
Krylov subspace methods are the methods of choice
for solving both the system of linear equations
(conjugate gradients) and the eigenvector problem
(Lanczos method).

K(A; x0; k) = span(x0, Ax0, A
2x0, . . . , A

(k−1)x0)

The solution found at each iteration, i, of conjugate
gradients is the solution to Ax = b projected onto the
Krylov subspace K(A, Ax0 − b, i) (Dongarra et al.,
1991).
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Krylov subspaces

K(A; x0; k) = span(x0, Ax0, A
2x0, . . . , A

(k−1)x0)

Connection with diffusion

xi+1 = xi + ∆tLxi

Convergence is directly related to graph diameter.
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Krylov subspaces
Idea: Use “small world” graphs to dramatically lower
graph diameter with the addition of a minimal number
of edges.

(a) Lattice (b) Small world – p.46/65



Krylov subspaces
Convergence with new edges added
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Krylov subspaces
Results are largely unaffected.

(a) Original (b) Lattice (c) Small World
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Multiresolution analysis

Common approach:

Image → Filter → Process → Backproject solution

Used for speed and resilience to noise
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Multiresolution analysis
Idea: Apply a graph-based analysis algorithm to the
whole pyramid as a separate graph.
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Multiresolution analysis
Long range connections improve performance on
blurry images

Image Lattice Pyramid
Blur
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Multiresolution segmentation
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Multiresolution analysis
Doesn’t the speed suffer with the additional nodes?

Computations nearly the same since the graph
diameter is small.
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Conclusion
Created Graph Analysis Toolbox for MATLAB to be
publicly released:

• Implementation of tools to allow processing of data associated

with graphs (e.g., filtering, edge detection, Ncuts)

• Implementation of new algorithms developed in my doctoral

work

• Provides tools for transferring image data from Cartesian images

to graphs of varying resolution

• Provides tools for visualizing data on graphs

• Includes space-variant graph data for over 20 species

• Has scripts to generate all the figures in my dissertation and

papers

• Includes a complete User’s Manual
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Conclusion
Final message:

The analogy between graph theory, circuit theory,
linear algebra and vector calculus provides

• Established principles that drive new algorithm
design - with an intuition about their functionality

• An ability to transfer standard computer vision
techniques to more general domains e.g.,
space-variant sensor data, higher dimensions,
abstract feature spaces

• The potential for alternate methods of
computation via circuit construction
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Future directions
General directions

• Use of nodes to represent image regions instead
of pixels

• Incorporation of training/learning into image
analysis algorithms

• Pursue interactive foreground/background
segmentation

• Object recognition
• Explore relationship with statistical image

analysis methods
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Graph theory
Taubin et al. (1996) frames standard filtering in the
same context

(a) Image (b) Low-pass filter (c) High-pass filter
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Graph theory
Coordinate filtering also possible (e.g., a ring graph)

(a) Original (b) Low-pass filter (c) High-pass filter
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Dirichlet Problem
Same technique works for simple graph drawing

(a) Original (b) Interpolated
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Isoperimetric Problem
The isoperimetric constant quantifies the separability
of a space
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Spectral partitioning
Spectral partitioning (Donath and Hoffman, 1972;
Pothen et al., 1990) adopts a different approach to
minimizing the isoperimetric ratio.

Isoperimetric ratio Rayleigh quotient
h(x) = xT Lx

xT d
R(x) = xT Lx

xT x

Results by Fiedler (1975a,b, 1973), Alon (1986) and Cheeger

(1970) characterize the relationship between isoperimetric con-

stant of a graph and the second smallest eigenvector of L (the

Fiedler value). The Normalized Cuts image segmentation algo-

rithm of Shi and Malik (2000) adopts this approach with a differ-

ent representation of the Laplacian matrix. – p.63/65



Spectral partitioning
Guattery and Miller (1998) demonstrated that spectral
partitioning fails to perform well on certain families
of graphs

(a) Spectral

(b) Isoperimetric
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Image processing
No edge information present - The Kaniza illusion

(a) Potentials (b) Partition

– p.65/65



References

Alon, N. (1986). Eigenvalues and expanders. Combina-
torica, 6:83–96. 600.

Anderson, W. N. J. and Morley, T. D. (1971). Eigenval-
ues of the laplacian of a graph. Technical Report TR
71-45, University of Maryland.

Biggs, N. (1974). Algebraic Graph Theory. Number 67
in Cambridge Tracts in Mathematics. Cambridge Uni-
versity Press.

Branin Jr., F. H. (1966). The algebraic-topological ba-
sis for network analogies and the vector calculus. In
Generalized Networks, Proceedings, pages 453–491,
Brooklyn, N.Y.

Cheeger, J. (1970). A lower bound for the smallest eigen-
value of the laplacian. In Gunning, R., editor, Prob-
lems in Analysis, pages 195–199. Princeton University
Press, Princeton, NJ.

Donath, W. and Hoffman, A. (1972). Algorithms for par-
titioning of graphs and computer logic based on eigen-
vectors of connection matrices. IBM Technical Disclo-
sure Bulletin, 15:938–944.

65-1



Dongarra, J. J., Duff, I. S., Sorenson, D. C., and van der
Vorst, H. A. (1991). Solving Linear Systems on Vector
and Shared Memory Computers. Society for Industrial
and Applied Mathematics, Philadelphia.

Fiedler, M. (1973). Algebraic connectivity of graphs.
Czechoslovak Mathematical Journal, 23(98):298–305.

Fiedler, M. (1975a). Eigenvalues of acyclic matrices.
Czechoslovak Mathematical Journal, 25(100):607–
618.

Fiedler, M. (1975b). A property of eigenvalues of non-
negative symmetric matrices and its applications to
graph theory. Czechoslovak Mathematical Journal,
25(100):619–633.

Guattery, S. and Miller, G. (1998). On the quality of
spectral separators. SIAM Journal on Matrix Analysis
and Applications, 19(3):701–719.

Hughes, A. (1977). The topography of vision in mam-
mals of contrasting life style: Comparative optics and
retinal organization. In The Handbook of Sensory
Physiology, volume 7. New York: Academic Press.

Perona, P. and Malik, J. (1990). Scale-space and edge
detection using anisotropic diffusion. IEEE Transac-

65-2



tions on Pattern Analysis and Machine Intelligence,
12(7):629–639.

Pothen, A., Simon, H., and Liou, K.-P. (1990). Partition-
ing sparse matrices with eigenvectors of graphs. SIAM
Journal of Matrix Analysis Applications, 11(3):430–
452.

Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888–905.

Taubin, G., Zhang, T., and Golub, G. (1996). Optimal
surface smoothing as filter design. Technical Report
RC-20404, IBM.

65-3


	Outline of talk
	Biological visual sampling
	Biological visual sampling
	Biological visual sampling
	Biological visual sampling
	Biological visual sampling
	Advantages of graph theory
	Graph theory
	Graph theory - Circuit analogy
	Graph theory
	Outline of talk
	Graph interpolation
	The Dirichlet Problem
	Dirichlet Problem
	Does it work?
	Dirichlet Problem - So what?
	Dirichlet Problem
	Space-variant sampling
	Laplace vs. Diffusion
	Outline of talk
	Isoperimetric Problem
	Isoperimetric Problem
	Isoperimetric Problem
	Graph formulation
	Graph formulation
	Graph formulation
	Graph formulation
	Circuit analogy
	Potentials
	Partitioning algorithm recap
	Spectral partitioning
	Data clustering
	Image processing
	Image processing
	Image processing
	Recursive bipartitioning
	Recursive bipartitioning
	Recursive bipartitioning
	Noise analysis
	Noise analysis
	Other graphs
	Outline of talk
	Krylov subspaces
	Krylov subspaces
	Krylov subspaces
	Krylov subspaces
	Krylov subspaces
	Outline of talk
	Multiresolution analysis
	Multiresolution analysis
	Multiresolution analysis
	Multiresolution segmentation
	Multiresolution analysis
	Outline of talk
	Conclusion
	Conclusion
	Future directions
	Graph theory
	Graph theory
	Dirichlet Problem
	Isoperimetric Problem
	Spectral partitioning
	Spectral partitioning
	Image processing

