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Abstract

Space-variant sampling of visual input is ubiquitous in the higher vertebrate brain,

because a large input space may be processed with high peak precision without requiring

an unacceptably large brain mass. Space-variant sampling has been studied in computer

vision for decades. A major obstacle to exploiting this architecture in machines, and

understanding its role in biology, is the lack of algorithms that generalize beyond regular

samplings. Most image processing algorithms implicitly assume a Cartesian grid underlying

the sensor. This thesis generalizes image processing to a sensor architecture described by

an arbitrary graph. This data structure separates the sensor topology, expressed by the

graph edge structure, from its geometry, represented by coordinates of the vertex set.

The combinatorial Laplacian of the sensor graph is a key operator underlying a series of

novel image processing algorithms. First, a new graph partitioning algorithm for segmen-

tation is presented that heuristically minimizes the ratio of the perimeter of the partition

border and the area of the partitions, under a suitable definition of graph-theoretic area.

This approach produces high quality image segmentations.

Interpolation of missing data on graphs is developed, using a combinatorial version of

the Dirichlet Problem, i.e., minimizing the average gradients of the interpolated values

v



while maintaining fixed boundary conditions. This leads to the solution of the Laplace

Equation, which represents the steady-state of the diffusion process for stated boundary

conditions. Results compare favorably to both isotropic and anisotropic diffusion for filling-

in of missing data.

A pyramid graph is defined by connecting vertical and horizontal levels of the Laplacian

pyramid data structure. The isoperimetric algorithm, run on the graph pyramid, yields

an improved segmentation at little extra computational cost. Finally, a small-world graph

topology is employed by randomly introducing a few new edges to the image graph. This

results in a large speed-up in computation time, with identical final results.

The algorithms developed in this thesis do not require that the data associated with

the graph are embedded in two-dimensions or even have a metric structure. Therefore,

this approach to generalized image processing may find wider application in other areas of

discrete data processing.
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Chapter 1

Introduction

For various reasons, many researchers have in the past been interested in freeing themselves

of the constraints of a uniformly sampled, Cartesian data representation for images. Mo-

tivations include a dependence on nonuniform sensors, feature extraction, data reduction,

or a desire to process even in the absence of some samples (or regions). Another group

of researchers have been interested in modeling biological sensory systems or applying the

architecture to computer vision tasks.

Space-variant sampling of visual space is ubiquitous in the higher vertebrate visual sys-

tem (Hughes, 1977; Schwartz, 1994), as seen in the comparison of retinal ganglion densities

of different species shown in Figure 1·1. In computer vision, this architecture is of interest

because it facilitates real-time vision applications due to a large (albeit lossy) reduction

in space-complexity (Rojer and Schwartz, 1990), and because it represents a prototype

for adaptive sampling in a more general setting. In a biological context, primate visual

sampling has been demonstrated to be strongly space variant (Schwartz, 1977), possess-

ing a single high resolution area (i.e., the fovea) with resolution falling off linearly toward

the periphery. Many non-primate species possess an even more exotic visual architecture.

Several bird species have multiple foveas (Collin, 1999), and elephants have a magnified

representation in the region of their trunk to facilitate “eye-trunk” coordination (Stone and

Halasz, 1989). Computer vision systems in which the architecture and spatial sampling

is adaptively tailored to the specific problem domain may well follow this design path.

Thus, it is of importance to develop a universal approach to visual representation which

is not implicitly dependent on a regular Cartesian grid. Representations of image data on

graph-theoretic structures provide one such route to a universal sampling and topology for
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visual sensing, since it separates the topological (via connectivity) from the geometric (via

sampling arrangement of visual space) aspects of the sensor.

The main reason for employing a space-variant architecture is to process with dramati-

cally lower bandwidth while retaining a high resolution in part of the visual scene. However,

the difference in visual sampling across species suggests that there is a relationship between

features of the sampling regime and the animal’s “visual ecology”. An example of such a

relationship is the belief that the “horizontal streak” seen in many animals (e.g., the rabbit

in Figure 1·1) is helpful to species that live in open (i.e., non-occlusive) visual environments

(Hughes, 1977). This belief has been supported by the strong correlation between species

with less occlusive visual ecologies and those possessing a horizontal streak. Uncovering

relationships of this nature help the engineer of a computer vision system design an ar-

chitecture that is optimized to match the design constraints for the visual ecology of the

artificial system. It is necessary that a data structure exists with sampling-independent

(i.e., generalized) computer vision algorithms in order for the designer to be free to craft

the visual sampling to the purpose of the system.

Work on the sampling of visual space employed by the upper primate visual system

may be divided into two sections:

1. Properties of the mapping

Traditional methods of space variant processing have focused largely on the mapping

from a regular Cartesian grid to an alternate space (Casasent and Psaltis, 1976;

Bonmassar and Schwartz, 1997). Therefore, the primary interest has been on the

properties of the transform and not the underlying data structure. In addition to the

considerable data reduction, the discretized log-polar transform of a Cartesian grid

has a number of properties that make it interesting to researchers in computer vision.

Casasent and Psaltis (1976) discovered that objects in the fovea which are scaled,

rotated or translated have a roughly invariant spectral signature. Their method is

to employ the log-polar transform of an image, apply the discrete Fourier transform,
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Figure 1·1: Isodensity lines for retinal ganglion cell distribution. Reprinted
from Hughes (1977), with permission.
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and find the log-polar transform of the spectrum (i.e., a Mellin transform). This

invariance may be used for object recognition (see Lin and Wu (2001) for a recent

application of this idea). The drawback to this idea is that the properties of scale

and rotation invariance only apply if the fovea is directed to the center of the object.

Furthermore, a translated object against a static background will not have the same

spectrum as a translated object against a translated background, which means that

the utility of this approach is limited to simple cases of an object moving against

a uniform background (or uniformly translated background). Another approach to

exploiting the structure of the log-polar mapping is that of Bonmassar and Schwartz

(1997), who developed a specialized Fourier transform called the “exponential chirp

transform” (ECT). The ECT finds the Fourier transform of an image in log-polar

format and uses the structure of the logarithmic function to obtain an even faster

algorithm than what would be obtained simply by the data reduction of an ordinary

log-polar transform.

2. Image Processing in a Space-Variant Domain

The notion of a “connectivity graph” was introduced by Wallace et al. (1994) to al-

low for image processing on a foveal sensor. This notion is introduced specifically to

model the sampling of the macaque retina (Schwartz, 1977). However, standard com-

puter vision tasks (e.g., edge finding, filtering) were not developed for this structure.

Neither visualization of the connectivity graph nor how one simulates a space-variant

sensor, given access to an acquisition device based on a Cartesian sensor array, is

addressed. Furthermore, the generalization of the connectivity graph to other bio-

logical sampling schemes was not discussed. More recent approaches to space-variant

vision appear to have abandoned this idea (e.g., Lin and Wu, 2001). Chen (2001)

used a mesh-based representation to perform image processing. His data structure

does not allow for an arbitrary topology (i.e., the graph must be planar and polyg-

onal). Furthermore, his operators are discretized continuum operators, instead of
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combinatorial operators (see Section 2.2 for a discussion). Significantly, Chen pro-

posed the use of a method from computer graphics (Heckbert, 1989) for resampling

an image to allow the determination of pixel values for an arbitrary sampling based

on a given image with Cartesian sampling. Unfortunately, this method only applies

to resamplings for which the Jacobian is known. For the nearly log-polar mapping

known to exist in macaque (Schwartz, 1977), this resampling works well. However,

the method for resampling does not apply for most species, since the distribution of

ganglion cell density has not been formally characterized. Chapter 2 details a set

of software tools that provides algorithms and data structures intended to facilitate

computer vision on arbitrary visual sampling arrangements, even if a space-variant

sensor is unavailable.

Since Zahn’s classic paper (Zahn, 1971), graph processing algorithms have become

increasingly popular in the context of computer vision (e.g., Wu and Leahy, 1993; Perona

and Freeman, 1998; Shi and Malik, 2000; Sarkar and Soundararajan, 2000; Wang and

Siskund, 2003). Typically, pixels are associated with the nodes of a graph and edges

are derived from a 4- or 8-connected lattice topology. Some authors have also chosen to

associate higher level features with nodes (Sarkar and Soundararajan, 2000; Perona and

Freeman, 1998). For purposes of importing images to space-variant architectures, we adopt

the conventional view that each node corresponds to a pixel.

Graph-theoretic algorithms often translate naturally to the proposed space-variant ar-

chitecture. Unfortunately, algorithms that employ convolution (or correlation) implicitly

assume a shift-invariant topology. Although shift-invariance may be a characteristic of

the topology for a locally connected lattice, a locally connected space-variant sensor array

(e.g., obtained by connecting to K-nearest-neighbors) will typically result in a shift-variant

topology. Therefore, a reconstruction of computer vision algorithms for space-variant ar-

chitectures requires the use of additional theory to generalize these algorithms.

Data acquired from sensors may be viewed as samples of an exterior, continuous world,

about which conclusions must be drawn from the limited information given by the samples.
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An alternate approach is to view the sensor data itself as the object about which conclusions

must be drawn. For reasons that will become clear in Section 2.2, the former view of sensor

data will be referred to as the sampling paradigm and the second as the combinatorial

paradigm.

The difference between these paradigms may appear to be purely academic, since the

primary output of many computer vision tasks (e.g., face detection) make no comment on

whether the result pertains to the pixels or the “real-world”. However, some algorithms do

operate under an implicit paradigm. For example, shape analysis (Loncaric, 1998; Zhang

et al., 1999) typically adopts the approach of the sampling paradigm, while morphological

analysis (Soille, 1999) employs the combinatorial paradigm. One practical difference be-

tween these two approaches is that algorithms developed to output statements about the

continuous world should improve performance with increasing samples, while algorithms

developed to output statements about the pixels should decrease performance due to the

increased processing required. The difference between these two approaches is amplified

when the sensor arrangement is space-variant, since the sampling theory is not as well

developed for nonuniform samples (Unser, 2000), despite the fact that some authors have

adopted the sampling viewpoint (Bonmassar and Schwartz, 1997). Furthermore, since a

typical motivation for employing a space-variant architecture is the ability to employ a

small number of pixels (while maintaining a high peak resolution), algorithms developed in

the sampling paradigm are expected to decrease accuracy while combinatorial algorithms

are expected to significantly increase in speed.

The approach taken in this thesis to the combinatorial paradigm for space-variant com-

puter vision is through combinatorial analogs of vector calculus, since operators such as the

gradient (Roberts, 1965) and Laplacian (Marr and Hildreth, 1980) play such a prominent

role in computer vision. Before developing new combinatorial space-variant algorithms,

the next chapter begins by reviewing the mathematical analogies between operators from

vector calculus and combinatorial operators. The remainder of the chapter is devoted

to the implementation of a TMMATLAB toolbox intended to provide a software environ-
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ment for combinatorial computer vision. This toolbox contains functions to execute the

original algorithms developed in later chapters, combinatorial algorithms which were devel-

oped by other researchers, and standard vector calculus-based computer vision algorithms

that were translated to combinatorial algorithms. The toolbox is publicly available at

http://eslab.bu.edu/software/graphanalysis, along with scripts that generate all of

the figures and tables in this thesis. Chapter 3 introduces an original graph partitioning

algorithm, called isoperimetric partitioning, and compares it to other state-of-the-art

algorithms. Chapter 4 applies a modified, recursive version of the isoperimetric algorithm

to problems in unsupervised data clustering and image segmentation. Chapter 5 proposes

the use of a “small world” topology in order to increase the speed of algorithms that make

use of iterative Krylov subspace methods (e.g., conjugate gradients), and demonstrates the

effect that this topology has on the segmentations obtained with the isoperimetric algo-

rithm. Chapter 6 introduces the use of an image pyramid considered as a single graph,

to which the isoperimetric algorithm is applied. Despite the additional nodes used in a

pyramid structure, the topology of the pyramid significantly mitigates the additional cost

when iterative Krylov subspace methods are used in the image analysis. Finally, in Chap-

ter 7, the question of how to interpolate data on a graph is addressed, and applications to

low-level computer vision are developed.
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Chapter 2

Graph-based machine vision

2.1 Introduction

In order to perform computer vision in the graph-theoretic, combinatorial, space-variant

paradigm outlined in the last chapter, a more generalized notion of standard vector calculus

operators must be generated, and a software environment must be developed. The purpose

of this chapter is to establish notation, review the analogies between vector calculus and

combinatorial methods, and outline the software, called the Graph Analysis Toolbox, we

have established for performing graph-theoretic computer vision.

The Graph Analysis Toolbox follows in the tradition of Wallace et al. (1994) and Chen

(2001) by providing methods to perform computer vision on graph-based architectures.

However, since data processing on graphs appears in other fields such as computer graphics

(Taubin, 1995), 3D surface flattening (Wandell et al., 2000) and data clustering (Jain et al.,

1999), we hope that this toolbox will find a larger audience. Specifically, there are three

problems that we hope to address with this toolbox:

1. Importing images

Since space-variant sensors (Sandini et al., 2000, 1989) are rare, tools must be devel-

oped for transferring image data acquired with a standard, Cartesian sensor array

to a desired space-variant sampling arrangement. We use the phrase importing an

image to refer to the process of transferring image data from a Cartesian sensor

array to a space-variant arrangement. Our strategy is to extend the resampling work

of Heckbert (1989) by removing the requirement that the resampling is performed by

a known differentiable function.
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2. Visualization

Additional tools are required in order to visualize space-variant images on a standard

raster CRT display. A Voronoi cell and interpolation method are provided to allow

visualization of image data on graphs.

3. Processing

At the core of the Graph Analysis Toolbox are methods for performing image pro-

cessing on data associated with each node in a graph. Some of the methods represent

original work, while others are collected from the literature. The theory underpinning

much of this work was developed by Roth (1955), Branin (1966) and classic research

in circuit theory (Kirchhoff, 1847; Weyl, 1923).

First we will introduce the basic mathematics and notation used in this thesis for

developing and applying combinatorial algorithms. A discussion of the data structures

and implementational approach to these issues will then be addressed. The remainder of

this chapter describes and demonstrates the various tools for importing, visualizing and

processing data on graphs.

2.2 Mathematical background

Most of the early work on the algebraic properties of graphs was done in the context of

linear circuit theory. This section is essentially a short review of Branin’s exposition on the

algebraic-topological basis for analogy between graphs and vector calculus (Branin, 1966).

A graph is a pair G = (V, E) with vertices (nodes) v ∈ V and edges e ∈ E ⊆ V × V .

An edge, e, spanning two vertices, vi and vj , is denoted by eij . Let n = |V | and m = |E|

where | · | denotes cardinality. A weighted graph has a value (typically nonnegative and

real) assigned to each edge called a weight. The weight of edge eij , is denoted by w(eij)

or wij . Since weighted graphs are more general than unweighted graphs (i.e., w(eij) = 1

for all eij ∈ E in the unweighted case), we will develop all our results for weighted graphs.
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Define the degree of a vertex vi, denoted di, as

di =
∑

eij

w(eij) ∀ eij ∈ E. (2.1)

A graph may be defined from a linear electrical circuit by identifying the wire between

circuit components with the node set, and the components bridging nodes (i.e., branches)

as the edge set with weights equal to the admittance of each component (or the conduc-

tance, in the case of resistors) (Branin, 1966). In this way, every linear circuit has an

equivalent graph and vice versa. The explicit connection between circuits, graphs and al-

gebraic topology was made in Roth’s fundamental paper (Roth, 1955). Roth showed that

Kirchhoff’s Current Law corresponds to a homology sequence in topology, while Kirchhoff’s

Voltage Law corresponds to a cohomology sequence. Roth then proposed Ohm’s Law as

a bridge between the sequences. Largely adopting the notation of Strang (1986), we may

write the fundamental equations of circuit theory in matrix form.

Define the m × n edge-node incidence matrix as

Aeijvk
=































+1 if i = k,

−1 if j = k,

0 otherwise,

(2.2)

for every vertex vk and edge eij , where eij has been arbitrarily assigned an orientation.

The notation Aeijvk
is used to indicate that the rows of A are indexed by edge eij and the

columns of A are indexed by node vk.

Define the m × m constitutive matrix, C, as the diagonal matrix with the weights

of each edge along the diagonal.
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The three main laws governing circuit theory may be written as

AT y = f (Kirchhoff’s Current Law), (2.3a)

Cp = y (Ohm’s Law), (2.3b)

p = Ax (Kirchhoff’s Voltage Law), (2.3c)

where f represents current sources at the nodes, p is the potential drop (voltage) across a

branch, x is the potential at a node and y is the current through a branch.

By viewing the incidence matrix as a linear operator, it may be seen that application

of that operator to a set of numbers assigned to each node induces a related set of numbers

on the edges. Kirchhoff’s Voltage Law is an example of this operation, in which electric

potentials at each node are converted to voltages across edges by application of the incidence

matrix. In a similar manner, the application of the operator AT to a set of numbers on

the edge set of a graph induces a related set of values defined on the node set. Kirchhoff’s

Current Law is an example of this operation, since the application of AT to the currents

through each branch yields the values of the current sources at each node. Application of

C may be viewed as bridging the voltages and currents defined on each edge.

When an edge is added to a tree, the unique closed path so formed is called a loop.

The set of loops, Q, formed by the addition of edges to a tree consists of elements, qi,

such that qi ∈ Q. Note that |Q| = |E| − |V | + 1 (a variation of the Euler formula), since

the number of edges in a tree of a connected graph is |V | − 1 (Biggs, 1974). Define the

loop-edge incidence matrix

Kmkeij
=































+1 if eij is crossed positively in a clockwise traversal of qk,

−1 if eij is crossed negatively in a clockwise traversal of qk,

0 otherwise.

(2.4)

Similar to the edge-node incidence matrix, the application of the loop-edge incidence matrix

to a set of numbers defined on the edges returns a related set of values defined on each
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loop.

Branin (1966) identified the A, AT and K operators with the familiar gradient, diver-

gence and curl operators from vector calculus. This analogy holds for familiar identities

such as AT KT = 0 (i.e., the divergence of the curl is zero) and allows definition of other

operators, such as the Laplacian, L = AT A. The generalization of the Laplace oper-

ator to the Laplace-Beltrami operator (Warner, 1983) fits well with this analogy, where

L = AT CA, with the matrix C representing the metric information. As a matrix, the

Laplacian may be derived directly from knowledge of V and E by letting

Lvivj
=































di if i = j,

−w(eij) if eij ∈ E,

0 otherwise.

(2.5)

The notation Lvivj
is used to indicate that the matrix L is being indexed by vertices vi

and vj . This matrix is also known as the admittance matrix in circuit theory, and a good

review of its properties is given by Merris (1994). More than one representation of the

combinatorial Laplacian operator has been developed, depending on the choice of metric

and normalization (Dodziuk, 1984; Dodziuk and Kendall, 1986; Mohar, 1988; Chung, 1997).

However, unless otherwise noted, the above formulation will be referred to as the Laplacian.

A summary of the analogies between operators in vector calculus and graph theory is given

in Table 2.1, while additional relationships are listed in Table 2.2.

There is both a conceptual and practical difference between the graph-theoretic analog

of a concept from mathematical physics and a discretization of the standard continuum

representation of that same concept. Consider solving Poisson’s equation (Courant and

Hilbert, 1989a) on a continuous domain with a digital computer (e.g., using finite elements).

The objective of such a solution would be that the values assumed at any point in the

domain could be determined, not just those points used in the calculation. In contrast,

solving Poisson’s equation on a graph, Lx = f , returns values only for the node set.

Furthermore, the number of nodes and the graph topology (i.e., edge set) directly affects
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Operator Vector calculus Combinatorial

Gradient ∇ A

Divergence ∇· AT

Curl ∇×∇ K

Laplacian ∇ · ∇ AT A

Beltrami ∇C · ∇ AT CA

Table 2.1: Correspondence between continuum differential operators and
combinatorial differential operators on graphs. C represents a constitutive
matrix relating flux to flow, e.g., a conductivity tensor, a diffusion tensor, a
thermal conductivity, a stress-strain tensor, or, in the context of differential
geometry, a metric tensor. A is the edge-node incidence matrix of the graph
representing the topology of the problem and K is the loop-edge incidence
matrix of the graph.

Equation Continuum Combinatorial

KVL ∇V = E Ax = p

KCL ∇ · J = dρ
dt

AT y = f

Ohm’s Law σ−1E = J Cp = y

Dirichlet Integral 1
2

∫

Ω |∇u|2dΩ 1
2xT AT CAx

Table 2.2: Correspondence between continuum differential equations and
combinatorial differential equations on graphs. Kirchhoff’s current law is a
quasi-static (∂B

∂t
= 0) approximation to Maxwell’s Equation ∇ × E = ∂B

∂t
.

Kirchhoff’s voltage law follows from the definition of electric field as the
gradient of potential. Ohm’s Law is a constitutive (phenomenological) law
asserting a presumed linear dependence between voltage and current.
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the solution to Poisson’s equation. In contrast, a major design goal of a discretization

procedure is that the solution for points in the domain are invariant to changes in the

meshing.

Conceptually, one can understand the difference between solving for the charge distri-

bution at the nodes of a planar electrical circuit given initially charged capacitors (i.e., the

combinatorial diffusion equation of Perona and Malik (1990)), and solving for the values

taken at discrete samples of a planar conductive material with an initial heat distribution

(i.e., the discretized continuous diffusion equation). Therefore, the solution of a continuous

problem by use of a digital computer is referred to here as a discrete approach, while the

solution of a problem using the graph-theoretic analogies shown above is referred to as a

combinatorial approach.

All functions in this toolbox operate under the graph-theoretic, combinatorial paradigm.

By this we mean that the operators we are concerned with are represented by matrices

and the quantities of interest are defined by vectors associating values to nodes, edges,

or meshes. Typically, the values associated with nodes are image values (e.g., grayscale,

RGB color channels) or coordinate values, while those associated with edges and loops are

dependent on the nodal values (e.g., the result of applying the gradient operator).

2.2.1 Adjacency matrix

Another fundamental matrix in graph theory is the n × n adjacency matrix defined as

Wvivj
=















w(eij) if eij ∈ E,

0 otherwise.

(2.6)

The adjacency matrix has also appeared in applications (e.g., Perona and Freeman (1998)),

and its spectral properties have been thoroughly analyzed (Cvetković et al., 1995). By

noting that the adjacency matrix, Laplacian matrix and edge-node incidence matrix all

completely specify the topology of a graph, it is not surprising that these matrices are

related. Specifically, it is well known (Biggs, 1974) that D −W = L = AT CA, where D is
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the diagonal matrix with Dii = di.

2.2.2 Indicator vectors

Another important type of value associated with nodes, edges and loops is an indicator

vector. Indicator vectors are used to indicate membership of a node, edge or loop in a set.

A common goal (Pothen et al., 1990; Shi and Malik, 2000) is to determine which components

of a graph belong to a set (e.g., which pixels belong to a segment). In this scenario, the

indicator vector represents the solution. Another important use of an indicator vector is to

perform set operations (e.g., union, intersection) or determine properties of the set (e.g.,

cardinality, boundary nodes). We develop this section in the context of a nodal indicator

vector. Indicator vectors on the set of edges or loops follow an identical development. For

a set of nodes, S ⊂ V an indicator column vector, x, may be defined as

xi =















0 if vi /∈ S,

1 if vi ∈ S.

(2.7)

For two sets, S1 and S2, with corresponding indicator vectors x1 and x2, the usual set

operations may be performed with

|S1| = xT
1 x1 (Set cardinality), (2.8)

S1 ∩ S2 = x1 ∧ x2 (Set intersection), (2.9)

S1 ∪ S2 = x1 ∨ x2 (Set union), (2.10)

where ∧ and ∨ denote the logical (binary) “and”, “or” operations.

The matrices W and L may be used to determine useful properties of a vertex set, S,

through operations with its indicator vector, x, in the following manner

1

2
xT Wx =

∑

eij ,vi∈S,vj∈S

w(eij) (Sum of the weights internal to S), (2.11)

xT Lx =
∑

eij ,vi∈S,vj∈S

w(eij) (Sum of the weights on the boundary of S), (2.12)



16

where S indicates the set complement of S.

2.3 Implementation

We chose to implement the toolbox in TMMATLAB for several reasons:

1. Numerical linear algebra is at the core of the combinatorial approach to space-variant

vision outlined above. Since TMMATLAB is well equipped with a numerical linear

algebra package and a sparse matrix package (Gilbert et al., 1992), TMMATLAB is

a natural environment for the toolbox.

2. Rapid prototyping of new algorithms is facilitated by the extensive set of tools avail-

able in TMMATLAB. Since this toolbox is intended for a research audience, the ability

to rapidly prototype new algorithms is essential.

3. Visualization of space-variant images associated with graphs is a major design ob-

jective of the Graph Analysis Toolbox. TMMATLAB provides an excellent ability to

visualize data.

However, TMMATLAB also has several drawbacks:

1. TMMATLAB is proprietary and licenses for the standard package and additional

toolboxes may cost hundreds to thousands of dollars. This fact limits the accessibility

of the Graph Analysis Toolbox.

2. Speed of computation in TMMATLAB can be very slow for certain types of oper-

ations (e.g., code loops). Although it is possible to use the MEX functionality of

TMMATLAB to speed up some of this computation, the portability of the code

suffers. Fortunately for the Graph Analysis Toolbox, the numerical linear algebra

package in TMMATLAB is relatively fast.

A full listing of the functions in the Graph Analysis Toolbox is given in Appendix A.1

and a list of demos is given in Appendix A.2. For reasons of consistency, ease of readability
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and agreement with publications, the same variable names were used to refer to the same

variables across functions and demos. A listing of standardized variable names used in the

Graph Analysis Toolbox is given by Appendix A.3.

2.4 Data structures

There are different ways of representing a graph on a computer (e.g., lists, matrices).

The choice of representation is often dependent on the particular application. The guiding

principle in defining data structures for the Graph Analysis Toolbox is that functions should

exist for switching between different representations and that information which may not

be bound together should not be forced together (e.g., in a struct). Since TMMATLAB

uses a pass-by-value system, this latter principle is especially important. Consequently,

there is no all-purpose struct that contains all possible information about a graph. A full

listing of standardized variable names is given in Appendix A.3.

2.4.1 Topological information

The most fundamental description of a graph is the topology, since none of the matrix

representations may be defined without it. The most space efficient representation of

the graph topology is given by a list, edges, that contains pairs of integers indicating

nodes joined by an edge. However, the matrices A, L and W may be generated from the

edge list with the functions incidence.m, laplacian.m and adjacency.m, respectively.

The function adjtoedges.m allows conversion from a adjacency matrix representation of

topology to an edge set.

2.4.2 Nodal information

Numbers associated with nodes in the Graph Analysis Toolbox typically have two separate

meanings: coordinates and image values. Aside from the semantics, there is no difference

in the way in which these values may be represented or processed. However, since one may

be interested in keeping notation of these quantities separate, two different N-dimensional
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lists are kept to refer to these quantities. The list called points refers to coordinate values,

while the list vals typically refers to image values (e.g., RGB, grayscale).

2.4.3 Structs

Two quantities are kept in TMMATLAB structs, since their component values are never

used separately. The information necessary to perform importing of a graph is kept in a

struct called imgGraph. Voronoi visualization information (see below) is kept in a struct

called voronoiStruct.

2.5 Generating graphs

When building a graph from a sensor array (or simulated sensor array), it is common

to assign the value of each sensor to a node. However, the choice of connectivity (i.e.,

edge set) is much less clear. Typically, one wants the nodes to be locally connected.

Two functions are provided for locally connecting a point set in arbitrary dimensions,

knn.m and triangulatepoints.m. An N-dimensional Delaunay triangulation is imple-

mented by triangulatepoints.m and K-nearest-neighbors is implemented by knn.m. For

2-dimensional points, triangulatepoints.m calls the MEX version of Shewchuck’s trian-

gle.c (Shewchuk, 1996), if installed. Recent interest in the use of “small-world” networks

(Watts and Strogatz, 1998; Watts, 1999; Strogatz, 2001) prompts inclusion of the function

addrandedges.m to randomly add a specified number of edges to the graph. The effect of

using addrandedges.m is to dramatically decrease the diameter of the graph (Watts and

Strogatz, 1998) while only minimally increasing the number of edges.

Due to the prominence of the Cartesian lattice in traditional computer vision, the

function lattice.m generates a lattice with three different topologies: 4-connected, 8-

connected or a radially connected topology (as in Shi and Malik (2000)).

The use of a multi-scale image representation to enhance image analysis algorithms has

a long history dating back to Burt et al. (1981) and Witkin (1983). Typically (Wright

and Acton, 1997; Chen and Acton, 1998; Acton, 1996; Comer and Delp, 1995; Pachai,
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1998), a multi-resolution representation is employed both for speed and robustness against

noise by performing the analysis at the coarsest level and projecting the solution back to

the original image. Multiresolution approaches to general graphs have also been proposed

(Barnard and Simon, 1994; Eppstein, 1992). The Graph Analysis Toolbox includes one

function latticepyramid.m that draws on this literature by returning a pyramid-shaped

graph with 3-dimensional coordinates, such that every node at a higher level is connected

to four (non-overlapping) nodes on the lower level. Although the pyramid graph is returned

as a unit (i.e., a single node and edge set), an index is also returned indicating the level of

each node and a list of its four children on the lower level. Some of the graphs described

in this section are displayed in Figure 2·1.

Finally, the function roach.m generates the “roach” graph of Guattery and Miller (1998)

for purposes of testing.

2.5.1 Biological datasets

Included in the extended (demo) release of the Graph Analysis Toolbox is a precomputed

(i.e., saved in .mat files) set of filters corresponding to the visual sampling associated with

22 different species. Following the retinal diagrams in Hughes (1977) of ganglion cell iso-

density lines (see Figure 1·1), topographical maps of the retinal distribution of other species

have been published. Specifically, we have included node sets (and filters) corresponding

to the visual sampling (as determined by ganglion cell counts) for baboon (Whitteridge,

1965), beagle (Peichl, 1992), bottlenosed dolphin (Mass and Supin, 1995), cat (Hughes,

1975), cheetah (Hughes, 1977), cow (Hughes, 1977), deep-sea bass (Collin and Partridge,

1996), deer (Hughes, 1977), German shepherd (Peichl, 1992), harlequin tusk fish (Collin

and Pettigrew, 1988), labrador (Hughes, 1977), pig (Hughes, 1977), pigeon (Whitteridge,

1965), plains kangaroo (Hughes, 1974), rabbit (Hughes, 1971), sacred kingfisher (Moroney

and Pettigrew, 1987), tree kangaroo (Hughes, 1974), two-toed sloth (Costa et al., 1989),

squirrel (Hughes, 1977), wolf (Peichl, 1992) and yellow-finned trevally (Collin, 1999). A

sampling reflecting the macaque retina is also provided by using the retinotopic function
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(a) (b) (c)

(d) (e) (f)

Figure 2·1: Examples of the structured graphs (i.e., node coordinates and
edge sets) generated by functions in the Graph Analysis Toolbox. (a) A
4-connected lattice. (b) An 8-connected lattice. (c) A radially connected
lattice. (d) A 4-connected “small world” lattice. (e) A flattened 4-connected
pyramid lattice. (f) A K-nearest-neighbors graph with a randomly gener-
ated set of coordinates.
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w = log(z + a) of Schwartz (1977). Generating sampling points according to this distribu-

tion is accomplished by the function logz.m.

Graphs were generated from topographic maps by interpolating the contours across

the extent of the topographic image, treating this interpolation as a probability density

function (PDF), sampling a predetermined number of points and scaling the coordinates of

the points to fit the desired input image size. In the case of the precomputed filters included

with the Demos package, the desired input image size was 256 × 256 (65, 536 pixels) and

the number of samples was 6, 400. The function contour2graph.m accepts contour images

where the background is white, the contours are shades of gray proportional to the values

of the isodensity lines and the blind spot (or pecten, in the case of Aves) is colored red

and returns an interpolated image (i.e., the PDF) by solving the corresponding Dirichlet

problem using the technique of Chapter 7. Sampling points from the PDF is accomplished

with the function pdf2graph.m. The process of converting a contour to a graph is shown

in Figure 2·2. For purposes of comparison, Appendix A.4 illustrates the PDFs of all the

species included in the Graph Analysis Toolbox.

2.6 Importing images

The problem of importing an image is to transfer an image taken with a conventional lattice

sensor array to a space-variant graph (usually with many fewer nodes than pixels in the

original) with minimal aliasing. The approach proposed by Chen (2001) was to treat the

problem of importing as a resampling problem by calculating appropriate filters (Heckbert,

1989) to apply to a neighborhood of pixels in the original image in order to output a value

for each node. The method of Heckbert (1989) for defining filters requires the definition of

a differential resampling function that inputs points in the original sampling and outputs

points in the new sampling. This formulation was sufficient for Chen (2001), since he was

using the w = log(z + a) mapping given by Schwartz (1977) to model macaque retinotopy.

However, we would like to make use of the visual sampling strategies of other species, for

which no retinotopic function has been proposed.
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(a) (b) (c)

Figure 2·2: Demonstration of conversion from a retinal topography to a
graph. The example chosen here is based on the retinal topography of the
cheetah (Hughes, 1977). (a) Isodensity contours of the cheetah retinal to-
pography. Darker contours represent a lower ganglion cell density, while
lighter contours represent a higher ganglion cell density. The blind spot
is shown in black for publication, although the function contour2graph.m

requires it to be colored red. (b) The interpolated and normalized proba-
bility density function determined from the contours (see text for details).
Darker areas correspond to areas of greater probability. (c) The graph ob-
tained by sampling 6, 400 nodes from the distribution in (b) and connecting
with a Delaunay triangulation. Note that the fovea is not at the center of
the image (i.e., the contours are taken from the left eye).
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Since space-variant sampling arrangements typically have some areas of high acuity

and some areas of low acuity, they require an active vision system to allow the high acuity

regions to sample different regions of a visual scene. By analogy with the high acuity

foveal pit found in most vertebrate vision systems, we refer to the region of highest acuity

as the fovea and the process of addressing the high acuity area to a region of an image

as foveation. In order to simulate the active vision aspects of a space-variant visual

sampling regime, we would like to be able to specify a point in a large image for the system

to fixate on. Therefore, a further design criteria for an importing procedure is that we

want the importing procedure to be relative to its own internal coordinate system that

may be “aimed” at different areas of a large image. Our method for accomplishing this is

to give the nodes coordinates such that the fovea is at the origin and each unit represents

one pixel in a standard raster image. The advantage of this design is that the filters may

be precomputed for a graph relative to the origin and simply shifted to different areas of

the image, resulting in fast on-line importation. The drawback to this design is that the

extent of the “visual field” must be fixed prior to computing the filters.

Heckbert’s Elliptical Weighted Average filters are ellipses computed for each new sample

such that the axes of the ellipse lay along the eigenvectors of the Jacobian matrix and the

weights for each point in the ellipse are given by an elliptical Gaussian function. In other

words, the image value assigned to each resampled point is the weighted sum of image

values on the original points lying within the computed ellipse. Our approach to computing

the ellipses for the resampled points is to perform a least-squares fit of an ellipse to the

Voronoi cell of each node and compute Gaussian weights. The ellipses computed for a small

randomly generated set of Gaussian distributed points in the plane are seen in Figure 2·3.

The filters for a point set are stored in a TMMATLAB struct named imgGraph. An

imgGraph has three fields: pntMap, breakpoints and filtWeights. In order for the

importation of images to be fast in TMMATLAB the three fields are used to avoid code

loops. The breakpoints field contains a list of indices to pntMap and filtWeights that

indicate the start and end of a block of pixels or weights corresponding to each new node.
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Figure 2·3: Voronoi cells for a point set and the corresponding ellipses fit
with least squares error used to generate the Elliptical Weighted Average
filters of Heckbert (1989).

The pntMap field is a set of two vectors containing the x- and y-coordinates for the nodes

corresponding to those pixels that lie within the ellipse for each point. The filtWeights

field contains the weight to be applied to each pixel in pntMap. Therefore, the size of

breakpoints is the same as the cardinality of the node set, while the size of pntMap and

filtWeights are larger than the node set (since more than one pixel typically maps to

each node), but equal to each other. Figure 2·4 demonstrates the importing of an image

onto a set of nodes that were randomly distributed in the plane with a uniform probability.

Figure 2·5 demonstrates the simulated active vision system by importing a large image at

multiple fixation points.

2.7 Visualization

Visualization of arbitrary, nonuniformly sampled 2D data is a difficult issue. Typical “stick-

and-ball” representations of graphs poorly convey the content of an image associated with

the nodes. Two methods have been implemented for visualizing an image on an arbitrary

architecture.
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(a) (b)

(c) (d)

Figure 2·4: Demonstration of importing an image onto a set of points
distributed randomly in the plane with a uniform distribution. Note that
the resolution of the sampling is almost two orders of magnitude smaller
than the resolution of the original. (a) Nodes randomly placed in the plane
with a uniform distribution. (b) Voronoi cells for the node set upon which
the filters were generated. (c) The original raster image: ESLab0043.jpg.
(d) The image imported onto the node set.



26

(a) (b)

(c) (d)

Figure 2·5: Demonstration of importing a large image onto a smaller graph
at different points (i.e., multiple fixation points). The example chosen here
is based on the retinal topography of the pigeon (Whitteridge, 1965). (a)
Original image: ESLab0043.jpg. The two fixation points are marked with
a white ‘×’ and a white ‘+’. (b) The graph corresponding to the retinal
topography of the pigeon. (c) Result of importing the image in (a) at the
point marked with a white ‘×’. (d) Result of importing the image in (a) at
the point marked with a white ‘+’.
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The first of these methods interpolates image values at a node across the faces of a

graph. If the graph is planar, the interior faces will be polygons, with image data at

each point on the polygon. If the graph is nonplanar, a Delaunay triangulation of the

points may be found quickly for purposes of the visualization. However, it should be

noted that not all graphs will have faces that produce a good image (e.g., if the nodes

were collinear). A common “shading” technique from computer graphics is to perform a

bilinear interpolation across vertices (i.e., Gourand shading). Applying this technique to

the internal faces provides a smooth change across the image. Unfortunately, the polygonal

faces can introduce artifacts into the visualization that degrade the quality. The function

showmesh.m generates a display in this manner.

A second visualization method is implemented in the Graph Analysis Toolbox that uses

the Voronoi diagram of the vertex set. This technique simply assigns each Voronoi cell the

color (or grayscale value) of its corresponding vertex. The visualization benefits from

its independence of the planar and internal faces requirements of the previous technique.

However, the visualization can sometimes look blocky. Furthermore, since the boundary

nodes have Voronoi cells that extend to infinity, a dense set of phantom nodes is used to

make finite, appropriately sized cells for the boundary nodes. The Voronoi information for

a graph is stored in a TMMATLAB struct called voronoiStruct. A voronoiStruct is

produced from a node set by the function voronoicells.m and consists of the three fields

pts, faces and index. The field voronoiStruct.pts contains coordinates for the vertices

of the Voronoi cells for the node set. Faces intended for use by patch.m are contained in

voronoiStruct.faces and an index referencing nodes with Voronoi cells contained inside

the convex hull is given by voronoiStruct.index.

The two visualization techniques are illustrated in Figure 2·6 for a grayscale image.

Despite the smoothness given by the face interpolation method of visualization, the Voronoi

cells method offers a better notion of the structure of the image distribution on the nodes,

and we therefore prefer it for visualization of space-variant images in the remainder of this

document.
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(a) (b)

(c) (d)

Figure 2·6: Comparison of the two visualization techniques implemented
in the Graph Analysis Toolbox. (a) Original image: ESLab0043.jpg. (b)
The graph corresponding to the retinal topography of the plains kangaroo
(Hughes, 1974). (c) Visualization of the space-variant image performed by
interpolating across the Delaunay triangles of the graph implemented in
showmesh.m. (d) Visualization of the space-variant image performed by
assigning a uniform grayscale value to the Voronoi cells of the node set,
implemented in showvoronoi.m.
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It is important to distinguish between sampling aliasing and visual aliasing. Sampling

aliasing refers to the inadequacy of the local sampling density to satisfy the image frequency

(as detailed above). On the contrary, visual aliasing refers to the displeasing visual artifacts

induced as a result of the visualization technique. Sampling aliasing is minimized by the

precomputation of Heckbert’s resampling filters. Visual aliasing, however, depends on the

visualization method employed and in no way reflects an inadequacy of the data obtained

nor its internal representation.

2.8 Processing

Processing data on graphs is a recurring theme that extends beyond space-variant vision

systems. There are four main types of processing implemented in the Graph Analysis

Toolbox: interpolation, filtering, edge finding and segmentation.

Isotropic and anisotropic versions of all the processing methods exist in the sense that

the edge weights all take unity value in the isotropic case and the weights assume different

values in the isotropic case. For example, use of uniform or nonuniform weights in building

the Laplacian matrix, is the difference between the isotropic diffusion of Koenderink (1984)

and the anisotropic diffusion of Perona and Malik (1990). Therefore, the theme is to

encode data information (e.g., intensity changes for images, distances for a point set) in the

structure of edge weights, and then build the operator in accordance with the weights. This

procedure provides the difference between isotropic or anisotropic diffusion, interpolation,

filtering and edge finding, as well as affording the structure necessary for some segmentation

algorithms (e.g., Shi and Malik, 2000).

The functions used to build the important matrix operators listed above are inci-

dence.m, laplacian.m and adjacency.m. The function incidence.m generates the edge-

node incidence matrix, laplacian.m generates the Laplacian matrix and adjacency.m

generates the adjacency matrix. In order to allow the user to choose between isotropic

and anisotropic operators, all of the operator generating functions allow specification of

edge weights in order to produce anisotropic operators, but default to generating isotropic
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operators if weights are not specified.

The important task of generating a weight set is handled by the function makeweights.m.

Define the vector of data changes, cij , as the Euclidean distance between the fields (e.g.,

coordinates, image RGB channels, image grayscale, etc.) on nodes vi and vj . For example,

if we represent grayscale intensities defined on each node with vector b, then c = Ab. If

the fields are nodal coordinates in the plane, then c represents the Euclidean distance in

the plane.

Although we typically treat coordinates as any other data field (e.g., to filter, interpo-

late, etc.), in the context of space-variant vision we may want to treat spatial differences

between the nodes separately from image-derived differences. Accordingly, associated with

the data and coordinates is a separate parameter, β1 and β2 we call scale. Setting either

parameter to zero nullifies the effects of the corresponding data or coordinates. A common

weighting function is implemented in makeweights.m and given by

wij = exp
(

−|β1c1
ij + β2c2

ij |
)

. (2.13)

Therefore, makeweights.m optionally accepts both data values and coordinate values for

the node set and generates a corresponding set of weights. In order to make one choice of

parameters (i.e., β1, β2) applicable to a wide range of data sets, we have found it helpful

to normalize the vectors c1 and c2.

2.8.1 Interpolation

The method of interpolation implemented in the Graph Analysis Toolbox is to solve the

combinatorial Laplace equation with Dirichlet boundary conditions given by the known

values, developed in Chapter 7.

The function dirichletboundary.m inputs an index of boundary nodes and their values

and solves the combinatorial Dirichlet problem for a graph with arbitrary connectivity,

producing a combinatorial harmonic function, x, such that Lx = 0 subject to boundary

conditions. Examples of using dirichletboundary.m to perform isotropic and anisotropic
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(a) (b)

Figure 2·7: An example of using the interpolation method for graph draw-
ing. (a) A graph was created by randomly generating the coordinates with a
uniform distribution and connecting the points with a 2D Delaunay triangu-
lation. The black dots represent the extremal points chosen to represent the
boundary (i.e., to have their coordinates fixed). (b) The graph generated
by interpolating the coordinates of the interior nodes.
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interpolation on missing image data are reserved until Chapter 7. However, graph drawing

is another task in which dirichletboundary.m is useful. By treating the extremal nodes

as boundary nodes, the coordinates of the interior nodes may be interpolated in order to

produce a more regular representation in the sense that each interior node is placed at the

average of its neighbors (by the mean value theorem). This usage of dirichletboundary.m

is displayed in Figure 2·7.

2.8.2 Filtering

In the context of surface fairing, Taubin has already taken a combinatorial approach to

filtering on a graph (Taubin, 1995; Taubin et al., 1996). Taubin treats the coordinates of

a vertex set of a 3D mesh as a signal for which low-pass filters may be designed in order to

smooth a noisy surface. The signal processing treatment in Taubin’s work follows standard

signal processing approaches, except that Taubin wants to apply the same techniques to an

arbitrary, shift-variant, topology. Generally the eigenfunctions of the Laplacian operator

define the surface harmonics (Courant and Hilbert, 1989a). In the combinatorial setting,

the Laplacian operator is represented by the Laplacian matrix, although Taubin chooses a

combinatorial representation of the Laplacian operator that is different than the definition

given in (2.5). For shift-invariant topologies, the Laplacian matrix is circulant and the

complex exponential basis vectors (functions) are the eigenvectors (Strang, 1986). In the

general case of a shift-variant topology, the Laplacian is not circulant, requiring a different

set of (usually unknown) eigenvectors in order to perform signal filtering. Taubin’s method

of filtering circumvents the need to compute the eigenvectors explicitly in order to modify

the spectral coefficients of an input signal (e.g., the coordinates of a graph or an image

on a graph). The function filtergraph.m implements Taubin’s λ − µ filtering technique

as well as standard mean filtering. Both the mean filter and the λ − µ filter are low-pass

filters. However, a high pass filter may be generated by subtracting the low-pass filtered

signal from the original. A band-pass filter may be generated by using the difference of

two low-pass filters. Figure 2·8 demonstrates image filtering and Figure 2·9 demonstrates
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coordinate filtering.

The spectrum of the Laplacian matrix has been thoroughly investigated (Mohar, 1991;

Chung, 1997; Merris, 1994; Anderson and Morley, 1971; Fiedler, 1975a). It is well known

that the eigenvalues of the Laplacian matrix are nonnegative and ordered such that the

smallest eigenvalue corresponds to the lowest frequency harmonic (i.e., the DC component)

and the largest eigenvalue corresponds to the highest frequency harmonic. This view of the

spectral characteristics of the Laplacian matrix predicts its use as an edge detector since,

as an operator, it will clearly have the effect of a high-pass filter. Another implication of

the spectral properties of the Laplacian matrix is that an iteration on the signal x of the

form

x1 = x0 − αLx0, (2.14)

will have the effect of creating a low-pass signal, since a high-pass form of the signal is

subtracted from the original. Since equation (2.14) represents one iteration of the combi-

natorial diffusion equation

dx

dt
= Lx, (2.15)

both isotropic (Koenderink, 1984) and anisotropic (Perona and Malik, 1990) diffusion may

be viewed as a low-pass filter. The function diffusion.m performs diffusion on a signal.

Figure 2·10 shows an example of isotropic and anisotropic diffusion on an image.

The combinatorial Dirichlet problem method of interpolation presented in Chapter 7

may also be viewed as a low-pass filter, since it requires the solution to a system of equa-

tions corresponding to the Laplace equation, constrained by Dirichlet boundary conditions.

A solution to a system of equations Lx = b may be viewed (if not computed) as x = L−1b.

The inverse of a matrix retains the same eigenvectors as the original, but the correspond-

ing eigenvalues of the inverse matrix are the reciprocal of the eigenvalues of the original.

Therefore, the solution to the constrained Laplace equation may be viewed as a low-pass

filter since the lowest frequencies of the inverse of the (constrained) Laplacian matrix will

correspond to the largest eigenvalues and vice versa. The relationship of the solution to a
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(a) (b) (c)

(d) (e) (f)

Figure 2·8: Filtering image data on a space-variant image. (a) The original
image: ESLab0059.jpg. (b) A space-variant graph patterned after the reti-
nal genglion cell distribution of the bottlenosed dolphin (Mass and Supin,
1995). (c) The imported image, before any processing. (d) Result of the
mean filter applied to the image in (c). (e) The low-pass λ−µ filter (Taubin,
1995) applied to the image in (c). (f) A high-pass filter of (c), produced by
differencing the low-pass signal of (e) with the original.
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(a) (b)

(c) (d)

Figure 2·9: Filtering coordinate data on a ring graph. (a) A noisy ring
graph produced by adding radial Gaussian distributed random to nodes
arranged in a perfect circle. (b) The effect of applying the mean filter to
the coordinates of the graph in (a). (c) The low-pass λ − µ filter (Taubin,
1995) applied to the coordinates of the graph in (a). (d) A high-pass filter
of the coordinates in (c), produced by differencing the low-pass signal of (c)
with the original.
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(a) (b) (c)

Figure 2·10: Diffusion filtering on an image. (a) The original image:
ESLab0059.jpg. (b) The effect of performing isotropic diffusion on the
4-connected lattice representing image (a). (c) The effect of performing
anisotropic diffusion on the 4-connected lattice representing image (a).

constrained Laplace equation to low-pass filtering and steady state diffusion with boundary

conditions (see Doyle and Snell, 1984) justifies its inclusion as a filtering method.

Figure 2·11 demonstrates anisotropic interpolation applied to low-pass filtering (i.e.,

smoothing) an image. To generate Figure 2·11, a 4-connected lattice was generated with

the weight function of (2.13), based on the Lena image. Samples were chosen from relatively

uniform areas by computing the sum of the edge gradients incident on each node. All nodes

with gradient sums below a threshold were selected as sample nodes to have their values

fixed. The remaining nodes were anisotropically interpolated, given the fixed set. One

can see that sharp boundaries are maintained, due to the encoding of image information

with weights. Areas of the image with high variability (e.g., the feathers) are smoothed

considerably since very few samples were taken, while areas with initially low variability

remain uniform.
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(a) (b)

(c) (d)

Figure 2·11: Anisotropic interpolation used to low-pass filter an image. (a)
Original Lena image. (b) Magnitude of summed image gradients. (c) Sam-
ples taken from lowest magnitude points. (d) Anisotropically interpolated
image.
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2.8.3 Edge finding

Edge detection is a common goal of low-level computer vision. Common edge detection

approaches (Jain, 1989) make use of gradient (Roberts, 1965) or Laplacian (Marr and

Hildreth, 1980) operators. An interesting feature of these operators is that although they

both operate on values associated with the node set, the combinatorial gradient operator

(the edge-node incidence matrix) returns values on the edge set while the combinatorial

Laplacian returns values on the node set . This difference is analogous to 3D vector calculus

in which the application of both the gradient and Laplacian operators to a scalar field

results in a scalar field for the Laplacian and a vector field for the gradient. Standard

gradient operators used for edge detection are applied to pixels and return values on pixels

(Roberts, 1965; Prewitt, 1970; Davis, 1975), causing the output of a typical gradient or

Laplacian-based edge detection algorithm to be a set of edge-pixels.

The function findedges.m keeps with tradition by returning a set of edge pixels, re-

gardless of whether a combinatorial gradient or Laplacian-based edge detection scheme is

chosen. In the context of space-variant edge detection, we have found that better edge

detection results are obtained by using an anisotropic edge operator, where the weights

are based on the Euclidean distance of the point coordinates. The reason for this is that

sensors (nodes) that are located more distant from each other are more likely to have

an intensity change that crosses threshold, even if the continuous light distribution varies

smoothly across a single object. Weighting the edge operator by distance compensates for

this effect. Figure 2·12 demonstrates gradient and Laplacian-based edge detection on a

space-variant image. In order to reduce noise but preserve edges, anisotropic diffusion was

performed before the edge operator was applied. Note that different nodes correspond to

different sized Voronoi regions in the visualization, due to the space-variance, which results

in varying edge width.
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(a) (b)

(c) (d)

(e) (f)

Figure 2·12: Edge detection of image data in a space-variant image. (a)
The original image: ESLab0032.jpg. (b) A space-variant graph patterned
after the retinal ganglion cell distribution of the labrador (Hughes, 1977).
(c) The imported image, before any processing. (d) Result of anisotropic
diffusion preprocessing used to sharpen edges and blur noise. (e) Result of
gradient-based edge detection. (f) Result of Laplacian-based edge detection.
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2.8.4 Segmentation

The use of graph theory for data clustering and image segmentation may be traced to

the work of Zahn on Gestalt clustering (Zahn, 1971). By framing the segmentation prob-

lem in the context of graph partitioning, Wu and Leahy (1993) developed the minimum

cut algorithm. Graph partitioning approaches to segmentation has led to several other

algorithms (Shi and Malik, 2000; Perona and Freeman, 1998; Wang and Siskund, 2003;

Sarkar and Soundararajan, 2000). A new method for applying graph partitioning to im-

age segmentation is presented in Chapter 4, and termed the isoperimetric algorithm.

The function partitiongraph.m performs a graph bipartition using the isoperimetric al-

gorithm, normalized cuts (Shi and Malik, 2000) or spectral partitioning (Pothen et al.,

1990). Converting a graph bipartitioning algorithm to a complete segmentation may be

accomplished by recursively applying the bipartitioning algorithm to each new segment

and stopping the recursion when a specified metric of partition quality fails to be sat-

isfied. The function recursivepartition.m recursively applies partitiongraph.m and

returns integer labels of each node such that nodes sharing the same label are considered

to be in the same partition. Since one often wants to apply these algorithms to standard

Cartesian images, the functions imgsegment.m and imgsegpyr.m input standard images

and return segmentations by using an underlying lattice or pyramid topology, respectively.

The function isosolve.m performs the calculations for computing the potentials for a sin-

gle application of the isoperimetric algorithm of Chapter 4. An example of applying the

segmentation algorithm to a space-variant image is given in Figure 2·13.

2.9 Miscellaneous functions

This section details the minor functions included in the Graph Analysis Toolbox used to

manipulate and visualize data.

Three functions used to perform minor graph and matrix manipulation are adjtoedges.m,

circulant.m and removeisolated.m. The function adjtoedges.m converts an adjacency

matrix to an edge set. Since shift-invariant graphs correspond to circulant adjacency and
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(a) (b)

(c) (d)

(e) (f)

Figure 2·13: Segmentation of image data in a space-variant image. (a) The
original image: ESLab0043.jpg. (b) A space-variant graph patterned after
the retinal ganglion cell density of the two-toed sloth (Costa et al., 1989).
(c) The imported image, before any processing. (d) Segment labels obtained
using the isoperimetric algorithm (β1 = 95, β2 = 15, stop = 1 × 10−5). (e)
Segmentation result displayed as the outline of segments against a white
background. (f) Segmentation result displayed as black outlines against the
faded image.
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Laplacian matrices, the function circulant.m is used to generate a sparse circulant matrix

from one row that details the topology of a single node (which suffices to define the topology

of the whole graph, since the graph is shift-invariant). The function removeisolated.m is

used to remove any nodes which are not connected to any other node.

The functions binarysearch.m, equalize.m and normalize.m provide additional data

processing. The function binarysearch.m implements a divide-and-conquer search algo-

rithm of a sorted vector for the closest value of a given input. Normalization of the columns

of a matrix to a specified range (defaulting to [0,1]) is accomplished by the function nor-

malize.m. Histogram equalization of a vector is performed by the function equalize.m.

Four functions are available to aid in visualization of a segmentation and the pro-

duction of segmentation results for publication. Three representations of a segmentation

are returned by segoutput.m and segoutputSV.m: integer node labels, black outlines of

segments against a white background and red outlines of segments superimposed on the

original image. The special case of Cartesian images is handled by segoutput.m, while

the general case of space-variant images is handled by segoutputSV.m. Since one may

want to use the red-outlined segmentations returned by segoutput.m and segoutputSV.m

in publication, the functions colorseg2bwseg.m and colorseg2bwsegSV.m convert the

red-outlined segmentation to a black-outlined segmentation superimposed on a faded out

copy of the original (so as not to confuse the segmentation lines with image features).

Cartesian and space-variant segmentations are handled by colorseg2bwseg.m and col-

orseg2bwsegSV.m respectively.

Since there is a frequent need in the Graph Analysis Toolbox for vectorizing an RGB

image, the function rgbimg2vals.m exists for this purpose.

2.10 Conclusion

The Graph Analysis Toolbox was developed to provide tools for space-variant computer

vision that are independent of sampling regime or a chosen topology. Graphs comprise

the primary data structure, and combinatorial methods are the tools used to process the
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data. Since graph-theoretic data structures appear in other disciplines with problems of

analysis similar to computer vision (e.g., segmentation, edge finding), we hope that the

tools developed here may find a wider audience.

Despite the ubiquity of space-variant sensors in biological systems, it is rare to find

artificial space-variant acquisition devices or displays. For this reason, the Graph Analysis

Toolbox allows the simulation of a space-variant sensor, by providing tools to transfer

images acquired with a Cartesian sensor array to an arbitrary space-variant representation.

Likewise, tools are also available to allow the display of space-variant images on a standard

CRT monitor. In addition to simulation of a space-variant sensor, the Graph Analysis

Toolbox provides the simulation of an active vision system that allows the simulated space-

variant architecture to be directed to different points in a larger image.

The mathematical tools developed by Roth and Branin provide a foundation upon

which to build the combinatorial approach to space-variant computer vision taken in this

thesis. Development of both the isoperimetric segmentation algorithm of Chapter 4 and the

interpolation method of Chapter 7 have their basis in these mathematics. Furthermore, the

software tools comprising the Graph Analysis Toolbox are used to generate all the figures

and tables in this thesis.
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Chapter 3

Isoperimetric graph partitioning

3.1 Introduction

The graph partitioning problem is to choose subsets of the vertex set of a graph such that

the sets share a minimal number of spanning edges while satisfying a specified cardinality

constraint. Graph partitioning appears in parallel processing (Simon, 1991), solving sparse

linear systems (Pothen et al., 1992), VLSI circuit design (Alpert and Kahng, 1995) and

image segmentation (Shi and Malik, 2000; Wu and Leahy, 1993), among others.

Methods of graph partitioning take different forms, depending on the number of parti-

tions required, whether or not the nodes have coordinates, and the cardinality constraints

of the sets. In this chapter, we use the term partition to refer to the assignment of each

node in the vertex set into two (not necessarily equal) parts. We propose an algorithm

termed isoperimetric partitioning, since it is derived and motivated by the isoperimetric

constant defined by Cheeger for continuous manifolds Cheeger (1970). The isoperimetric

algorithm most closely resembles spectral partitioning in its use and ability to create hy-

brids with other algorithms (e.g., multilevel spectral partitioning (Karypis and Kumar,

1998), geometric spectral partitioning (Chan et al., 1994)), but requires the solution to a

large, sparse system of equations, rather than solving the eigenvector problem for a large,

sparse matrix. This leads to improved speed and numerical stability. In this chapter we

present the isoperimetric algorithm, prove some of its properties, review other graph parti-

tioning methods and compare partitioning algorithms on randomly generated weighted and

unweighted planar, nonplanar and three-dimensional graphs as well as a few specialized

graphs.
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3.2 Isoperimetric algorithm

Graph partitioning has been strongly influenced by properties of a combinatorial formula-

tion of the classic isoperimetric problem: For a fixed area, find the shape with minimum

perimeter (Chung, 1997). The approach to graph partitioning presented here is a heuristic

for finding a region with minimum perimeter for a fixed area.

Cheeger defined (Cheeger, 1970) the isoperimetric constant h of a manifold as

h = inf
S

|∂S|

VolS
, (3.1)

where S is a region in the manifold, VolS denotes the volume of region S, |∂S| is the area

of the boundary of region S, and h is the infimum of the ratio over all possible S. For

a compact manifold, VolS ≤ 1
2VolTotal, and for a noncompact manifold, VolS < ∞ (see

Mohar (1989, 1988)).

For a graph, G, the isoperimetric number (Mohar, 1989), hG is

hG = inf
S

|∂S|

VolS
, (3.2)

where S ⊂ V and

VolS ≤
1

2
VolV . (3.3)

In finite graphs, the infimum in (3.2) becomes a minimum. The boundary of a set, S, is

defined as ∂S = {eij |i ∈ S, j ∈ S} and on a weighted graph

|∂S| =
∑

eij∈∂S

w(eij). (3.4)

Although different definitions of volume have been proposed for a set containing nodes

(c.f., Dodziuk (1984); Dodziuk and Kendall (1986); Mohar (1988)), the standard definition

in the context of graph partitioning is

VolS = |S|. (3.5)
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For a given set of nodes, S, we term the ratio of its boundary to its volume as the isoperi-

metric ratio and denote it by h(S). The isoperimetric sets for a graph, G, are any S

and S for which h(S) = hG. The specification of a set satisfying (3.3), together with its

complement may be considered as a partition and therefore we use the term interchange-

ably with the specification of a set satisfying (3.3). A good partition is defined to be one

with a low isoperimetric ratio (i.e., the optimal partition consists of the isoperimetric sets

themselves). Therefore, our goal is minimize |∂S| for a constant VolS . Unfortunately, find-

ing isoperimetric sets is an NP-hard problem (Mohar, 1989), so our algorithm is a heuristic

for finding a set with a low isoperimetric ratio that runs in polynomial time.

Define an indicator vector, x, that takes a binary value at each node

xi =















0 if vi ∈ S,

1 if vi ∈ S.

(3.6)

A specification of x may also defines a partition. By definition (2.5) of the Laplacian

matrix, L,

|∂S| = xT Lx, (3.7)

and VolS = xT r where r denotes the vector of all ones. Maximizing the volume of S subject

to VolS = k for some constant k ≤ 1
2VolV may be done by asserting the constraint

xT r = k. (3.8)

In terms of the indicator vector, the isoperimetric number of a graph (3.2) is given by

hG = min
x

xT Lx

xT r
. (3.9)

Given an indicator vector, x, then h(x) is used to represent the isoperimetric ratio associ-

ated with that partition.

The constrained optimization of the isoperimetric ratio is made into a free variation via

the introduction of a Lagrange multiplier Λ (Arfken and Weber, 1985) and relaxation of
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the binary definition of x to take nonnegative real values. Therefore, solving for an optimal

partition may be accomplished by minimizing the function

F (x) = xT Lx − Λ(xT r − k). (3.10)

Since L is positive semi-definite (see Biggs (1974); Fiedler (1986)) and xT r is nonneg-

ative, F (x) will be at a minimum for any critical point. Differentiating F (x) with respect

to x yields

dF (x)

dx
= 2Lx − Λr (3.11)

Thus, the problem of finding the minimal x (minimal partition) reduces to solving the

linear system

2Lx = Λr. (3.12)

Henceforth, we ignore the scalar multiplier 2 and the scalar Λ since, as we will see later, we

are only concerned with the relative values of the solution, rather than the actual values.

The matrix L is singular: all rows and columns sum to zero (i.e., the vector r spans its

nullspace), so finding a unique solution to equation (3.12) requires an additional constraint.

We assume that the graph is connected, since the optimal partitions are clearly each

connected component (i.e., h(x) = hG = 0) if the graph is disconnected. A linear time

breath-first search may be performed to check for connectivity of the graph. Note that in

general, a graph with c connected components will correspond to a matrix L with rank

(n−c) (Biggs, 1974). If we arbitrarily designate a node, vg to include in S (i.e., fix xg = 0),

this is reflected in (3.12) by removing the gth row and column of L, and the gth row of x

and r such that

L0x0 = r0. (3.13)

where L0 indicates the Laplacian with a row/column removed, x0 is the vector x with the

corresponding removed entry and r0 is r with the removed row. Removal of a column of

the incidence matrix A, yields a matrix A0 referred to as the reduced incidence matrix

(Foulds, 1992), and AT
0 CA0 = L0. Note that (3.13) is a nonsingular system of equations.
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(a) (b)

Figure 3·1: An example of a simple graph (a), and its equivalent circuit
(b). Solving (3.13) (using the node in the lower left as ground) for the graph
depicted in (a) is equivalent to connecting (b) and measuring the potential
values at each node.

3.2.1 Circuit analogy

The three fundamental equations of circuit theory (2.3) may be combined into the linear

system

AT
0 CA0x = L0x = f, (3.14)

since AT CA = L (Biggs, 1974).

In other words, the solution to equation (3.13) in the isoperimetric algorithm is provided

by the steady state of a circuit where each edge has a conductance equal to the edge weight

and each node is supplied by a unit current source. The potentials that are established on

the nodes of this circuit are exactly those which are being solved for in equation (3.13).

An example of this equivalent circuit is displayed in Figure 3·1. By analogy then, we refer

to the node, vg, for which we set xg = 0 as the ground node. Likewise, the solution,

xi, obtained from equation (3.13) at node vi will be referred to as the potential for node

vi. The need for fixing an xg = 0 to constrain equation (3.12) may be seen not only
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from the necessity of grounding a circuit powered only by current sources in order to find

unique potentials, but also from the need to provide a boundary condition in order to find

a solution to Laplace’s equation, of which (3.12) is a combinatorial analog. In our case,

the “boundary condition” is that the grounded node is fixed to zero.

One final remark on the circuit analogy to (3.13) follows from recalling Maxwell’s

principle of least dissipation of power: A circuit with minimal power dissipation provides

a solution to Kirchhoff’s current and voltage laws (Maxwell, 1991a). Explicitly, solving

(3.13) for x is equivalent to solving the dual equation for y = CAx. The power of the

equivalent circuit is P = I2R = yT C−1y subject to the constraint from Kirchhoff’s law

that AT y = f . Therefore, the y found by y = CAx also minimizes the above expression

for y (Strang, 1986; Baak, 1998). Thus, our approach to minimizing the combinatorial

isoperimetric ratio is identical to minimizing the power of the equivalent electrical circuit

with the specified current sources and ground (Strang, 1986).

3.2.2 Alternative derivation of algorithm

Suppose we wish to partition a graph by trying to find all the “bottleneck” edges that

separate a reference node, vg, from all the other nodes and set the partitions as those

on either side of the bottleneck edges. Define a path vector as an m × 1 vector with

±1 in the entries for edges along the path (according to orientation of the edge). Define a

usage vector as an m×1 vector whose entries give the number of times the corresponding

edge appears in a path from a particular node to ground. We may propose the following

procedure for finding the “bottleneck” edges in a graph and converting this identification

into a partition:

1. Choose a ground point, vg.

2. For each other node, find all paths from that node to ground.

3. For each of these paths, build the corresponding path vector.

4. Sum up the set of path vectors to form a usage vector for this node, and normalize by
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the number of paths (to allow comparison with other nodes that may have a different

number of paths).

5. Sum the usage vectors across all non-ground nodes to get a global usage vector.

6. Treat the global usage vector as a set of “potential drops” across edges and find the

least-squares solution for the potentials.

7. Cut the graph based on the node potentials.

Although this may appear computationally expensive, we show in this section that this

idea leads us to the same equations derived above for the isoperimetric problem.

An undirected graph is simply assigned arbitrary orientations to the edges. Orientation

of the edges should not be confused with the notion of a directed graph. A directed

graph only permits flow between nodes in accordance with the orientation of the edges. In

contrast, the arbitrary orientation assigned above still permits flow in either direction, but

changes the sign of the flow depending on whether or not the flow is in accordance with

the orientation.

Each row of the edge-node incidence matrix of (2.2), A, sums to zero (since each edge

has a single initial node and a single terminal node), meaning that the column space is

not full rank. This issue is avoided (for a connected graph) by removing one column of A,

forming the reduced incidence matrix, A0 (Foulds, 1992).

For each non-ground node, vi, find the set of all paths, Ti, from that node to ground.

Formally, a path vector, ti, is defined

tk =















±1 if eij is in the path to ground,

0 else.

(3.15)

For si number of paths from node vi to ground, Ti = {t1, t2, . . . , tsi
}. Formally define

the usage vector as

ui =
1

si

∑

t∈Ti

t. (3.16)
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Now, vi, sum the individual usage vectors, ui, to produce the global usage vector, p,

p =
∑

i

ui. (3.17)

In order to solve for the least-squares solution to the potentials, x, given the “potential

drops” of p, one solves the equation

A0x = p. (3.18)

Now, one may multiply both sides by the matrix AT
0 to yield

AT
0 A0x = AT

0 p,

AT
0 A0x =

∑

i

AT
0 ui,

AT
0 A0x =

1

si

∑

i

∑

t∈Ti

AT
0 t.

However, since t is a path from node vi to ground, the result of AT
0 t is a vector, q, with

the value

qk =















1 if k = i,

0 else.

(3.19)

One way to interpret this result is by considering the matrix AT as the discrete divergence

(Rockafellar, 1984). The divergence of a path from a node vi to ground yields one source

(i.e., node vi) and one sink (i.e., node vg), but the sink is obscured since we are using the

reduced incidence matrix (Foulds, 1992).

It may be seen that

AT
0 A0x =

1

si

∑

i

∑

t∈Ti

AT
0 t,

AT
0 A0x =

1

si

∑

i

∑

t∈Ti

q,

AT
0 A0x =

1

si

∑

i

siq,

AT
0 A0x = r0, (3.20)
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where r0 denotes the reduced vector of all ones. Now, it simply remains to be noted that

the left hand side AT
0 A0 = L0 (Biggs, 1974; Strang, 1986) (with uniform weights) to see

the relationship between this section and the original derivation. In other words, equation

(3.20) is the same as the original derivation, given by equation (3.13).

If a weighted graph is used instead, the potential drop across each edge is inversely

biased by its weight (i.e., smaller weights induce a larger potential drop). In other words,

build a diagonal m×m matrix, C that has the edge weights on the diagonal. Then, modify

equation (3.18) to be CA0x = p. Now, since AT
0 CA0 = L0 for arbitrary weights, then the

result of (3.20) is the same as (3.13).

3.2.3 Choosing a ground

Although the choice of a ground node may roughly correspond to an “attention” point in

the context of image segmentation (see Chapter 4), there are several possible strategies for

choosing the ground node in the general case. Anderson and Morley (1971) proved that

the spectral radius of L, ρ(L), satisfies ρ(L) ≤ 2dmax, suggesting that grounding the node

of maximum degree may have the most beneficial effect on the conditioning of equation

(3.13). In the comparison section of this chapter, we employ three grounding strategies.

We ground the node with maximum degree, the node with minimum degree and choose

the best of three random nodes.

3.2.4 Solving the System of Equations

Solving (3.13) is the computational core of the algorithm. It requires the solution to a

large sparse system of symmetric equations where the number of nonzero entries in L will

equal 2m.

Methods for solving a system of equation fall generally into two categories: direct and

iterative methods (Golub and Van Loan, 1996; Hackbusch, 1994; Fiedler, 1986). The former

are generally based on Gaussian elimination with partial pivoting while for the latter, the

method of conjugate gradients is arguably the best approach. Iterative procedures have
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the advantage that a partial answer may be obtained at intermediate stages of the solution

by specifying a limit on the number of iterations allowed. This feature allows one to

trade speed for accuracy in finding a solution. An additional feature of using the method

of conjugate gradients to solve equation (3.13) is that conjugate gradients is efficiently

parallelized (Dongarra et al., 1991; Gremban, 1996). In this work, we used the sparse

matrix package in TMMATLAB (Gilbert et al., 1992) to find direct solutions.

3.2.5 Converting the solution to a partition

The binary definition of x was extended to the real numbers in order to solve (3.13).

Therefore, in order to convert the solution, x, to a partition, a subsequent step must be

applied (as with spectral partitioning). Conversion of a potential vector to a partition may

be accomplished using a threshold. A cut value is a value, α, such that S = {vi|xi ≤ α}

and S = {vi|xi > α}. The partitioning of S and S in this way may be referred to as a

cut. This thresholding operation creates a partition from the potential vector, x. Note

that since a connected graph corresponds to an L0 that is an M-matrix (Fiedler, 1986),

and is therefore monotone, L−1
0 ≥ 0. This result then implies that x0 = L−1

0 d0 ≥ 0.

Employing the terminology of Spielman and Teng (1996), the standard approaches to

cutting the indicator vector in spectral partitioning are to cut based on the median value

(the median cut) or to choose a threshold such that the resulting partitions have the lowest

available isoperimetric ratio (the ratio cut). The ratio cut method will clearly produce

partitions with a lower isoperimetric ratio than the median cut. Unfortunately, because of

the required sorting of x, the ratio cut method requires O(n log(n)) operations (assuming

a bounded degree). The median cut method runs in O(n) time, but forces the algorithm to

produce equal sized partitions, even if a better cut could be realized elsewhere. Despite the

required sorting operation for the ratio cut, the operation is still very inexpensive relative

to the solution of equation (3.13) for the range of n we focus on (typically a few hundred

thousand nodes).
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3.2.6 Summary

Therefore, the isoperimetric algorithm for partitioning a graph may be summarized by

1. Choose a ground node, vg.

2. Solve (3.13).

3. Cut x using the method of choice to obtain S and S.

3.2.7 Time Complexity

Running time depends mainly on the solution to equation (3.13). A sparse matrix-vector

operation depends on the number of nonzero values, which is, in this case, O(m). If we

may assume a constant number of iterations required for the convergence of the conjugate

gradients method, the time complexity of solving (3.13) is O(m). Cutting the potential

vector with the ratio cut requires a O(n log(n)) sort. Combined, the time complexity is

O(m + n log n). In the case of graphs with bounded degree, then m ≤ ndmax and the time

complexity reduces to O(n log(n)).

3.3 Some formal properties of the algorithm

3.3.1 Connectivity

In this section, we prove that the partition containing the grounded node (i.e., the set S)

must be connected, regardless of how a threshold (i.e., cut) is chosen. The strategy for

establishing this will be to show that every node has a path to ground with a monotonically

decreasing potential.

Proposition 1. If the set of vertices, V , is connected then, for any α, the subgraph with

vertex set N ⊆ V defined by N = {vi ∈ V |xi < α} is connected when x0 satisfies L0x0 = f0

for any f0 ≥ 0.

This proposition follows directly from proof of the following

Lemma 1. For every node, vi, there exists a path to the ground node, vg, defined by

Pi = {vi, v
1, v2, . . . , vg} such that xi ≥ x1 ≥ x2 ≥ . . . ≥ 0, when L0x0 = f0 for any f0 ≥ 0.
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Proof. By equation (3.13) each non-grounded node assumes a potential

xi =
1

di

∑

eij∈E

xj +
fi

di
, (3.21)

i.e., the potential of each non-grounded node is equal to a nonnegative constant added

to the (weighted) average potential of its neighbors. Note that (3.21) is a combinatorial

formulation of the Mean Value Theorem (Ahlfors, 1966) in the presence of sources.

For any connected subset, S ⊆ V, vg /∈ S, denote the set of nodes on the boundary of S

as Sb ⊂ V , such that Sb = {vi| eij ∈ E, ∃ vj ∈ S, vi /∈ S}.

Now, either

1. vg ∈ Sb, or

2. ∃ vi ∈ Sb, such that xi ≤ min xj , ∀ vj ∈ S by (3.21), since the graph is connected.

By induction, every node has a path to ground with a monotonically decreasing potential,

(i.e., start with S = {vi} and add nodes with a nondecreasing potential until ground is

reached).

3.3.2 Spanning trees

Since a tree will have a unique path from any node to ground, Lemma 1 guarantees that

the nodes in this path will have a nonincreasing potential. However, since a tree is a

special case of a graph (e.g., the reduced incidence matrix is square), there is an alternate

derivation of this result. A theorem by Branin (1963) shows that for node vk, edge eij and

ground vg, the inverse of the reduced incidence matrix for a spanning tree, B = A−1
0 , is

Bvkeij
=































+1 if eij is positively traversed in the path from vk to vg,

−1 if eij is negatively traversed in the path from vk to vg,

0 otherwise.

(3.22)

Therefore,

L−1
0 = (AT

0 CA0)
−1 = BT C−1B. (3.23)

Each value of L−1
0 may therefore be interpreted as the sum of the reciprocal weights of

shared edges along the unique path to vg between nodes vi and vj i.e., the shared distance
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of the unique paths from vi and vj to vg in the metric interpretation.

It follows that the potential values taken by x0 in x0 = L−1
0 f0 are monotonically

increasing along the path from vg to any other node for nonnegative f0 and C.

3.3.3 Fully connected graphs

The isoperimetric algorithm will produce a uniform solution to equation (3.13) when ap-

plied to fully connected graphs with uniform weights. Any set with cardinality equal to

half the cardinality of the vertex set is a solution to the isoperimetric problem for a fully

connected graph with uniform weights. For a uniform edge weight, w(eij) = κ for all

eij ∈ E, the solution, x0, to equation (3.13) will be xi = 1/κ for all vi ∈ V . The use of the

median or ratio cut method will choose half of the nodes arbitrarily. Although it should

be pointed out that using a median or ratio cut to partition a vector of randomly assigned

potentials will also produce equal sized (in the case optimal) partitions, the solution to

equation (3.13) is unique for a specified ground (in contrast to spectral partitioning, which

has n− 1 solutions) and explicitly gives no preference to a node since all the potentials are

equal.

3.4 Review of previous work

Since the isoperimetric graph partitioning algorithm is a global partitioning algorithm (i.e.,

it inputs a graph and outputs a partition (Preis and Diekmann, 1996)), this section will

only review other global graph partitioning algorithms.

3.4.1 Spectral Partitioning

Building on the early work of Fiedler (1975a,b, 1973), Alon and Milman (1985); Alon

(1986) and Cheeger (1970) who demonstrated the relationship between the second smallest

eigenvalue of the Laplacian matrix (the Fiedler value) for a graph and its isoperimetric

number, spectral partitioning was one of the first graph partitioning algorithms to be

successful (Donath and Hoffman, 1972; Pothen et al., 1990). The algorithm partitions a
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graph by finding the eigenvector corresponding to the Fiedler value, termed the Fiedler

vector and cutting the graph based on the value in the Fiedler vector associated with each

node. Physically, the Fiedler vector corresponds to the second harmonic of a surface. Like

isoperimetric partitioning, the output of spectral partitioning is a set of values assigned

to each node, which allows a cut to be a perfect bisection by choosing a zero threshold

(the median cut) or by choosing the threshold that generates a partition with the best

isoperimetric ratio (the ratio cut). The flexibility of spectral partitioning allows it to be

used as a part of hybridized graph partitioning algorithms, such as geometric-spectral

partitioning (Chan et al., 1994) and multilevel schemes (Karypis and Kumar, 1998).

Spectral partitioning attempts to minimize the isoperimetric ratio of a partition by

solving

Lz = λz (3.24)

with L defined as above and λ representing the Fiedler value. Since the vector of all

ones, r, is an eigenvector corresponding to the smallest eigenvalue (zero) of L, the goal

is to find the eigenvector associated with the second smallest eigenvalue of L. Requiring

zT r = 0 and zT z = n may be viewed as additional constraints employed in the derivation

of spectral partitioning to circumvent the singularity of L (for an explicit formulation of

spectral partitioning from this viewpoint, see Hu and Blake (1994)). Therefore, one way of

viewing the difference between the isoperimetric and the spectral methods is in the choice

of the additional constraint that regularizes the singular nature of the Laplacian L.

In the context of spectral partitioning, the indicator vector z is usually defined as

zi =















−1 if vi ∈ S,

+1 if vi ∈ S,

(3.25)

such that z is orthogonal to r for an equal sized partition. The two definitions of the

indicator vector (equations (3.6) and (3.25)) are related through x = 1
2(z + r). Since r is

in the nullspace of L, the definitions are equivalent up to a scaling.
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Simple, unhyrbridized, unilevel spectral partitioning lags behind modern multilevel

algorithms (e.g., Karypis and Kumar (1998)) in terms of partition quality. However,

compared against other global graph partitioning algorithms, spectral partitioning still

performs well. The major drawbacks of spectral partitioning are its speed and numerical

stability. Even using the Lanczos algorithm (Golub and Van Loan, 1996) to find the Fiedler

vector for a sparse matrix, spectral partitioning is still much slower than many other par-

titioning algorithms. Furthermore, the Lanczos algorithm becomes unstable as the Fiedler

value approaches its neighboring eigenvalues (see Hendrickson and Leland (1995); Golub

and Van Loan (1996) for discussion of this problem). In fact, the eigenvector problem

becomes fully degenerate if the Fiedler value assumes algebraic multiplicity greater than

one. For example, consider finding the Fiedler vector of a fully connected graph, for which

the Fiedler values has algebraic multiplicity equal to n− 1. This situation could allow the

Lanczos algorithm to converge to any vector in the subspace spanned by the eigenvectors

corresponding to the Fiedler value. Finally, it has been pointed out by Guattery and Miller

(1998) that classes of graphs exists for which spectral partitioning will produce consistently

poor partitions.

3.4.2 Geometric Partitioning

Geometric partitioning (Gilbert et al., 1998) is only defined for graphs with nodal coor-

dinates specified (e.g., finite-element meshes). Furthermore, the geometric partitioning

algorithm assumes that the nodes are locally connected and computes a good spatial sep-

arator (i.e., ignoring topology altogether). Building on theoretical results of Miller et al.

(1998, 1993), geometric partitioning works by stereographically projecting nodes from the

plane to the Riemann sphere, conformally mapping the nodes on the sphere such that a

special point (called the centerpoint) is at the origin and then randomly choosing any

great circle on the Riemann sphere to divide the points into two equal halves. In practice,

several great circles are randomly chosen and the best one is used as the output.

Although geometric partitioning is computationally inexpensive (albeit using multiple
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trials) and produces good partitions, the major drawback of the geometric partitioning

algorithm is its inapplicability to graphs without coordinates or to graphs that are not

locally connected (e.g., nonplanar graphs).

3.4.3 Geometric-Spectral Partitioning

Geometric-spectral partitioning (Chan et al., 1994) combines elements of both spectral

partitioning and geometric partitioning. By finding the eigenvectors corresponding to both

the second and third smallest eigenvalues, one may treat the nodes as having spectral

coordinates by viewing the values associated with each node in the two eigenvectors as

two-dimensional coordinates in the plane. Applying geometric partitioning to the spectral

coordinates of the nodes instead of actual coordinates (if available) heuristically gives better

partitions than either spectral or geometric partitioning alone.

Geometric-spectral partitioning represents a more general algorithm than straightfor-

ward geometric partitioning since it applies to more general graphs (i.e., graphs without

coordinates) and because it takes advantage of topological information (in computing the

spectral coordinates). However, geometric-spectral partitioning is more computationally

expensive than spectral partitioning since it requires the computation of two eigenvectors

instead of one. Numerically, the algorithm is also prone to more numerical problems than

spectral partitioning, since the Lanczos algorithm has increased error as more “interior”

eigenvectors are computed (Golub and Van Loan, 1996), and because the spectral coor-

dinates are not unique if either the second or the third eigenvalue of L has an algebraic

multiplicity greater than one.

3.4.4 Inertial Partitioning

Like geometric partitioning, the inertial method (Hendrickson and Leland, 1995) requires

coordinates for each node and ignores topological considerations. Treating each node as

a point mass embedded in the plane, the principle inertial axis is computed. Nodes on

opposite sides of a hyperplane orthogonal to this axis are considered to be in different
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partitions. This method is fast and, for planar graphs, produces reasonable partitions.

3.4.5 Coordinate Partitioning

A partition of the vertex set may be achieved by placing the nodes on opposite sides of

a hyperplane orthogonal to a coordinate axis into different partitions. The coordinate

partitioning algorithm performs this partitioning for each coordinate axis and chooses the

best partition. Like geometric and inertial partitioning, coordinate partitioning requires

coordinate information for the node set. This method is very fast, but tends to produce

poor partitions.

3.5 Comparison of algorithms

Three versions of the isoperimetric algorithm are compared with the algorithms reviewed

above. The three versions are obtained from three grounding strategies: grounding the

maximum degree node, the minimum degree node and a random node. Grounding strate-

gies are denoted by “MG” for maximum degree ground, “MnG” for minimum degree ground

and “RG” for random ground. For each random ground partition, three randomly chosen

grounds were tried and the best one chosen. In order to give a notion of how “break-

able” the graphs in question are, a purely random partition is also included. The geomet-

ric, geometric-spectral, inertial and coordinate partitions were all obtained through the

MESHPART software package for TMMATLAB (Gilbert et al., 1998).

The algorithms were tested on weighted and unweighted planar, nonplanar and three-

dimensional graphs, as well as some special graphs. All algorithms were compared by

considering the number of edges spanning the two equally sized partitions produced by the

algorithm (i.e., the median cut, for the isoperimetric and spectral algorithms). The spectral

and isoperimetric algorithms were additionally compared in terms of the isoperimetric ratio

by employing the ratio cut to find the best partition (i.e., not necessarily partitions of equal

size). As noted by Schreiber and Martin (1999), we found that the distribution of spanning

edges and h(x) resembled Gaussian distributions. For this reason, we only report the mean
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and variance of each.

3.5.1 Planar graphs

Planar graphs were generated by uniformly sampling one thousand points from a two-

dimensional unit square and connecting them with a Delaunay triangulation. One thousand

such graphs were generated for both the weighted and unweighted trials. In the unweighted

trial, weights were randomly assigned to each edge from a Gaussian distribution with a

variance of 10, 000 and mean adjusted such that all weights were positive. Results for the

median cut comparison are found in Table 3.1 and for the ratio cut comparison are found

in Table 3.2.

Unweighted graphs Weighted graphs

Algorithm Mean Cut Variance Cut Mean Cut Variance Cut

Iso MG 95.7 59.3 3.26 × 106 42.9

Iso RG 93.5 38.3 3.08 × 106 8.47

Iso MnG 92.4 40 3.3 × 106 8.32

Spectral 86.6 20.7 2.94 × 106 7.86

Geometric 87.4 8.71 3.05 × 106 4.57

Geo-Spec 82.5 4.06 2.9 × 106 8.2

Inertial 97.2 70.2 3.36 × 106 16.3

Coordinate 94.2 49.1 3.23 × 106 13.6

Random 1, 490 1, 120 5.07 × 107 1, 090

Table 3.1: Comparison of the algorithms on 1, 000 randomly generated pla-
nar graphs produced by uniformly sampling 1, 000 two-dimensional points
in the unit square and connecting via a Delaunay triangulation. The left-
most two columns represent the mean and variance of |∂S| for equal sized
partitions produced by each algorithm when applied to unweighted pla-
nar graphs. The rightmost two columns represent the same quantities for
weighted planar graphs.

3.5.2 Nonplanar graphs

Purely random graphs (typically nonplanar) were generated by connecting each pair of

1, 000 nodes with a 1% probability. One thousand such graphs were generated for both the

weighted and unweighted trials. In the unweighted trial, weights were randomly assigned to

each edge from a Gaussian distribution with a variance of 10, 000 and mean adjusted such
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Unweighted graphs Weighted graphs

Algorithm Mean h(x) Variance h(x) Mean h(x) Variance h(x)

Iso MG 0.185 2.0 × 10−4 6.21 × 103 1.6 × 106

Iso RG 0.177 9.64 × 10−5 5.71 × 103 1.73 × 105

Iso MnG 0.181 1.2 × 10−4 6.36 × 103 1.96 × 105

Spectral 0.171 8.41 × 10−5 5.66 × 103 2.59 × 105

Table 3.2: Comparison of the isoperimetric and spectral algorithms on
1, 000 randomly generated planar graphs produced by uniformly sampling
1, 000 two-dimensional points in the unit square and connecting via a De-
launay triangulation. The leftmost two columns represent the mean and
variance of h(x) obtained by applying the ratio cut to the output of each
algorithm when applied to unweighted planar graphs. The rightmost two
columns represent the same quantities for weighted planar graphs.

that all weights were positive. Since coordinate information was meaningless, only those

algorithms which made use of topological information were compared (i.e., the isoperimet-

ric, spectral and geometric-spectral algorithms). Results for the median cut comparison

are found in Table 3.3 and for the ratio cut comparison in Table 3.4.

Unweighted graphs Weighted graphs

Algorithm Mean Cut Variance Cut Mean Cut Variance Cut

Isoperimetric MG 4.46 × 103 6.84 × 103 1.7 × 108 2.24 × 104

Isoperimetric RG 4.14 × 103 5.86 × 103 1.6 × 108 1.86 × 104

Isoperimetric MnG 4.16 × 103 4.65 × 103 1.6 × 108 1.86 × 104

Spectral 4.06 × 103 5.98 × 103 1.57 × 108 1.77 × 104

Geometric-Spectral 3.98 × 103 3.93 × 103 1.54 × 108 1.69 × 104

Random 4.97 × 103 4.88 × 103 1.92 × 108 2.64 × 104

Table 3.3: Comparison of the algorithms on 1, 000 random graphs (sym-
metric) produced by connecting each edge with a 1% probability. Partition-
ing algorithms that rely on coordinate information were not included, since
they are not applicable to this problem. The leftmost two columns represent
the mean and variance of |∂S| for an equal sized bipartition produced by
each algorithm for unweighted random graphs. The rightmost two columns
represent the same quantities for weighted random graphs.

3.5.3 Three-dimensional graphs

Modeling and computer graphics applications frequently require the use of locally connected

points in a three dimensional space. One thousand graphs were generated by uniformly
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Unweighted graphs Weighted graphs

Algorithm Mean h(x) Variance h(x) Mean h(x) Variance h(x)

Isoperimetric MG 4.73 0.712 1.78 × 105 1.25 × 109

Isoperimetric RG 4.27 0.441 1.57 × 105 8.45 × 108

Isoperimetric MnG 5.17 0.633 1.92 × 105 1.15 × 109

Spectral 5.6 1.86 2.17 × 105 3.22 × 109

Table 3.4: Comparison of the algorithms on 1, 000 random graphs (sym-
metric) produced by connecting each edge with a 1% probability. The
leftmost two columns represent the mean and variance of h(x) for a parti-
tion generated using the ratio cut for random graphs. The rightmost two
columns represent the same quantities for weighted random graphs.

sampling 1, 000 points in the unit cube and connecting them via the three-dimensional

Delaunay. Both weighted and unweighted graphs were generated. In the unweighted trial,

weights were randomly assigned to each edge from a Gaussian distribution with a variance

of 10, 000 and mean adjusted such that all weights were positive. Results for the median

cut comparison are found in Table 3.5 and for the ratio cut comparison in Table 3.6.

Unweighted graphs Weighted graphs

Algorithm Mean Cut Variance Cut Mean Cut Variance Cut

Isoperimetric MG 3.04 × 103 6 × 104 1.27 × 108 1.87 × 104

Isoperimetric RG 3.09 × 103 2.84 × 104 1.29 × 108 1.24 × 104

Isoperimetric MnG 3.25 × 103 3.23 × 104 1.36 × 108 1.54 × 104

Spectral 3.01 × 103 3.44 × 104 1.26 × 108 1.38 × 104

Geometric 2.82 × 103 7.48 × 103 1.19 × 108 8.25 × 103

Geometric-Spectral 2.74 × 103 1.15 × 104 1.15 × 108 8.8 × 103

Inertial 3.2 × 103 3.81 × 104 1.34 × 108 1.56 × 104

Coordinate 2.8 × 103 7.86 × 103 1.17 × 108 8.13 × 103

Random 1.9 × 104 6.66 × 104 7.99 × 108 3.18 × 105

Table 3.5: Comparison of the algorithms on 1, 000 randomly generated
three-dimensional graphs produced by uniformly sampling 1, 000 three-
dimensional points in the unit cube and connecting via a three-dimensional
Delaunay. The leftmost two columns represent the mean and variance of
|∂S| for an equal sized bipartition produced by each algorithm for un-
weighted planar graphs. The rightmost two columns represent the same
quantities for weighted planar graphs.
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Unweighted graphs Weighted graphs

Algorithm Mean h(x) Variance h(x) Mean h(x) Variance h(x)

Isoperimetric MG 6.06 0.261 2.53 × 105 6.91 × 108

Isoperimetric RG 6.12 0.105 2.55 × 105 4.89 × 108

Isoperimetric MnG 6.5 0.134 2.71 × 105 5.5 × 108

Spectral 5.99 0.142 2.51 × 105 5.77 × 108

Table 3.6: Comparison of the isoperimetric and spectral algorithms on
1, 000 randomly generated three-dimensional graphs produced by uniformly
sampling 1, 000 three-dimensional points in the unit cube and connecting
via a three-dimensional Delaunay. The leftmost two columns represent the
mean and variance of h(x) obtained using the ratio cut for each algorithm
on unweighted planar graphs. The rightmost two columns represent the
same quantities for weighted planar graphs.

3.5.4 Special graphs

In addition to the randomly generated graphs used above to benchmark the isoperimetric

algorithm, we also applied the set of algorithms to two-dimensional graphs taken from

applications (see Gilbert et al. (1998); Chan et al. (1994); Cao et al. (1996) for other uses

of these graphs). The meshes were obtained through the FTP site of John Gilbert and

the Xerox Corporation at ftp.parc.xerox.com from the file /pub/gilbert/meshpart.uu.

The list of graphs used is given in Table 3.7. The results using the median cut comparison

are found in Table 3.8 and for the ratio cut comparison are found in Table 3.9. Random

partitions were not included here, since only one trial was performed (i.e., there was no

randomness in the graph generation).

The set of algorithms were also applied to three graph families of theoretical interest,

for which standard algorithms are known to produce poor partitions. The first of these is

the “roach” graph of Guattery and Miller (1998) with the total length of the roach ranging

from 10 to 50 nodes long (i.e., 20 to 100 nodes total). The family of roach graphs is known

to result in poor partitions when spectral partitioning is employed with the median cut. For

a roach with an equal number of “body” and “antennae” segments, the spectral algorithm

will always produce a partition with |∂S| = Θ(n) (where Θ(·) is the function of Knuth

(1976)) instead of the constant cut set of two edges obtained by cutting the antennae from
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Mesh Name Nodes Edges

Eppstein 547 1556

Tapir 1024 2846

“Crack” 136 354

Airfoil1 4253 12289

Airfoil2 4720 13722

Airfoil3 15606 45878

Spiral 1200 3191

Triangle 5050 14850

Table 3.7: Information about the special graphs used to benchmark
the algorithms on. All graphs were obtained from the ftp site of
John Gilbert and the Xerox Corporation at ftp.parc.xerox.com in file
/pub/gilbert/meshpart.uu

.

Algorithm Epp Tapir Tri Air1 Air2 Air3 Crack Spiral

Iso MG 24.8 51 150 137 111 255 200 9

Iso RG 20.3 34 152 100 111 194 158 9

Iso MnG 25.6 51 150 107 199 446 149 9

Spectral 26.6 58 152 132 117 194 157 9

Geometric 22 37 152 98 102 152 190 65

Geom-Spec 21.8 25 144 93 113 157 146 9

Inertial 23.8 49 142 94 209 245 268 83

Coordinate 23 55 142 94 172 230 231 59

Table 3.8: The number of edges cut by the equal-sized partitions output
by the various algorithms.

Algorithm Epp Tapir Tri Air1 Air2 Air3 Crack Spiral

Iso MG 0.0906 0.0474 0.0588 0.0351 0.0425 0.0268 0.0758 0.0108

Iso RG 0.0657 0.0262 0.0592 0.0347 0.0443 0.0275 0.0613 0.0108

Iso MnG 0.0936 0.0262 0.0588 0.037 0.0705 0.0477 0.0576 0.0108

Spectral 0.0809 0.0262 0.0598 0.0342 0.0425 0.02 0.059 0.0108

Table 3.9: The minimum isoperimetric ratio obtained by applying the ratio
cut method to the output of the isoperimetric and spectral partitioning
algorithms.
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Algorithm Mean Cut Roach Mean Cut TreeXPath Mean Cut “Badmesh”

Iso MG 2 27.1 2.98

Iso RG 2.44 27.4 3.17

Iso MnG 3.34 27.6 3.63

Spectral 14.8 36.3 12.1

Geometric 2 26.6 449

Geom-Spec 2 27 2.98

Inertial 2 28.7 513

Coordinate 2 26.2 513

Random 36.8 505 1, 050

Table 3.10: The mean number of edges cut by the equal-sized partitions
output by the various algorithms over a parameter range for each family of
graphs (see text for details). The three graph families here (roach, treeX-
Path and “badmesh”) are of theoretical interest in that they are known to
produce poor results for different classes of partitioning algorithms.

Algorithm Mean h(x) Roach Mean h(x) TreeXPath Mean h(x) “Badmesh”

Iso MG 0.0815 0.128 0.0297

Iso RG 0.0798 0.128 0.0295

Iso MnG 0.0796 0.127 0.0294

Spectral 0.0796 0.128 0.0294

Table 3.11: The mean isoperimetric ratio obtained using a ratio cut on the
output of the partitioning algorithms when applied to three graph families
of theoretical interest. Means are calculated over a range of parameters
defining the graph family (see text for details).
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(a)

(b)

Figure 3·2: The “roach” graph (n = 20) illustrated here is a member of a
family of graphs for which spectral partitioning is known to fail to produce a
partition with low isoperimetric ratio. Uniform weights were used for both
algorithms. (a) Solution using isoperimetric algorithm. Ratio = 0.1. (b)
Solution using spectral algorithm. Ratio = 0.5

the body. Spielman and Teng (1996) demonstrated that the spectral approach may be

made to correctly partition the roach graph if additional processing is performed. The

partitions obtained from the spectral and isoperimetric algorithms when applied to the

roach graph are compared in Figure 3·2. The second graph family of theoretical interest,

referred to as “TreeXPath”, was also proposed by Guattery and Miller (1998), and is

known to result in poor partitions when spectral partitioning is used with the median cut.

For purposes of benchmarking here, the cardinality of the three-dimensional point set was

varied between 50 and 1, 000 nodes. The final graph family of theoretical interest is the

so-called “badmesh” of Cao et al. (1996) for which no quality straight-line separator exists.

Badmeshes were generated with node sets varying between 200 and 4, 000, with a constant

ratio of 4
5 between shell sizes. Mean values across the nodal range are reported in Table

3.10 for partitions obtained with the median cut and Table 3.11 using the ratio cut.

3.6 Conclusion

We have presented a new algorithm for partitioning graphs. The results of our comparison

with other global partitioning algorithms demonstrates that the isoperimetric algorithm
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produces similar quality outputs on the graph partitioning problem in terms of the mean

and variance of the partition quality (i.e., either the number of edges cut or h(x)). The

primary advantages of the isoperimetric algorithm are the ability to incorporate topolog-

ical and weight information in finding a partition (i.e., coordinates are not required), the

computational stability of always having a unique solution and the ability to find a parti-

tion of optimal size (i.e., the ratio cut). Spectral partitioning has similar characteristics,

but requires the solution to the eigenvector problem instead of the solution to a sparse,

symmetric, positive definite system of equations required by the isoperimetric algorithm.

In our experience, this difference translates to a speed advantage for the isoperimetric al-

gorithm of more than an order of magnitude over the spectral algorithm. Additionally

the spectral algorithm suffers from a degeneracy not present in the isoperimetric algorithm

for graphs with a Fiedler value corresponding to multiple eigenvectors. Furthermore, the

isoperimetric algorithm finds good partitions for families of graphs which are known to

cause poor results when certain graph partitioning schemes are applied. For example,

the spectral partitioning algorithm is known to produce poor partitions when applied to

the“roach” and “TreeXPath” graphs, while any algorithm that relies on coordinate infor-

mation (e.g., geometric, inertial) produces poor partitions when applied to the “badmesh”

family of graphs. In contrast, the isoperimetric algorithm does not suffer from the prob-

lems associated with these families. The isoperimetric algorithm also has an exact circuit

analogy, which leaves open the possibility for analog computation e.g., with VLSI. Finally,

a proof was given which guarantees that the grounded partition will always be connected.

Choosing the best partition resulting from a constant number of random grounds ap-

pears to be the most consistent method for finding a quality partition without increasing

the time complexity of the algorithm. However, the partitions resulting from choosing the

node of maximum degree do not appear, on average, to be drastically different than the

best of three random grounds approach used to produce the above results. Therefore, if

one wants to reduce computations by grounding only one node, the suggested heuristic of

grounding the node of maximum degree appears to be reasonable.
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In the next chapter, a modified, recursive version of the isoperimetric algorithm is

applied to the problem of data clustering and image segmentation.
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Chapter 4

Isoperimetric image segmentation

4.1 Introduction

The application of graph-theoretic methods to spatial pattern analysis has a long history,

including the pioneering work of Zahn (1971) on minimal spanning tree clustering, the

development of connectivity graph algorithms for space-variant sensors by Wallace et al.

(1994), and the seminal work on image segmentation, termed “Ncuts” by Shi and Malik

(2000). One reason for this interest is that the segmentation quality of Ncuts is very good.

However, there are several other important advantages of graph-based sensor strategies,

which we will now address.

4.1.1 Motivation for using graph-theoretic approaches in image processing

There are at least four distinct reasons to employ graph theoretic approaches to image

segmentation:

1. Local-global interactions are well expressed by graph theoretic algorithms. Zahn

(1971) used a minimal spanning tree on a weighted graph to illustrate Gestalt clus-

tering methods. The term “Gestalt” derives from early theories of visual psychology

which attempted to relate local and global features of visual stimuli in terms of “rules”

which may be best described as simple variational principles (e.g., “best completion”,

etc.). Zahn’s results were impressive for the time, coming at the very beginnings of

modern image processing and clustering. The central reason for this success, we be-

lieve, is that the minimal spanning tree defines a minimizing principle (e.g., a tree of

minimal edge weights) which respects the global structure of the problem set, allow-
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ing a simple local rule (e.g., cut the graph at peak values of local density measure

(Zahn, 1971)) to effectively cluster a set of feature vectors. Many graph-theoretic

approaches involve the use of global and local information, as will be made explicit

later in the present paper. As Zahn originally pointed out, the important notion of

Gestalt in image processing—the relationship of the whole to the part—seems to be

an important ingredient in both biological and machine image processing.

2. New algorithms for image processing may be crafted from the large corpus of well-

explored algorithms which have been developed by graph theorists. For example,

spectral graph partitioning was developed to aid in design automation of computers

(Donath and Hoffman, 1972) and has become the basis for the Ncuts algorithm (Shi

and Malik, 2000). Similarly, graph theoretic methods for solving lumped, Ohmic

electrical circuits based on Kirchhoff’s voltage and current law (Weyl, 1923; Roth,

1955; Branin, 1966; Strang, 1986), form the basis for the method proposed in Chapter

3 for solving the isoperimetric problem.

3. Adaptive sampling and space-variant vision require a “connectivity graph” approach

to allow image processing on sensor architectures with space-variant visual sampling

and the loss of the shift-invariant property of a lattice (Wallace et al., 1994). Space-

variant architectures have been intensively investigated for application to computer

vision for several decades (Wallace et al., 1994; Sandini et al., 1989) partly because

they offer extraordinary data compression. A sensor (Sandini et al., 1989) employing

a complex logarithmic visual sampling function can provide equivalent peak resolu-

tion to the workspace size of a constant resolution sensor with 10,000 times the pixel

count (Rojer and Schwartz, 1990). However, even simple space-variant architectures

provide significant challenges with regard to sensor topology and anti-aliasing. The

connectivity graph was proposed by Wallace et al. (1994) as a general algorithmic

framework for processing the data output from space-variant sensors. This archi-

tecture describes sensor pixels by a specific neighborhood connectivity as well as
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geometric position. Using this approach, a variety of image processing algorithms

were defined on an arbitrary pixel architecture, including spatial filtering via the

graph Laplacian.

4. New architectures for image processing may be defined that generalize the traditional

Cartesian design. The basic sampling scheme of visual sensor design has changed lit-

tle since its origins in the 1930’s. Vision sensors are generally based on fixed size

pixels with fixed rate clocks (i.e., they are space-invariant and synchronous). The

space-invariant pixel design, as noted above, can lead to a huge inefficiency when

compared to a spatially adaptive sensor (e.g., a foveal architecture). A similar issue

holds for temporal sampling, indicating that biological systems once again provide a

counterexample to current engineering practice. Retinal sensors are not synchronous,

but are based on an asynchronous “integrate and fire” temporal design. They inte-

grate the locally available intensity, and fire when a fixed threshold is achieved. It

is evident that this “just in time” strategy for temporal sampling will improve the

average response speed of the ensemble of sensors. Presumably, a slight difference

in response speed may translate to a significant difference in survival value. Just

as in the spatial case, the temporal domain can (and does, in animals) exploit an

adaptive, variable sampling strategy. In a computational context, this suggests the

use of graph-theoretic data structures, rather than pixels and clocks. In turn, the

flexible data structures based on graphs, which are familiar in computer graphics,

have been relatively unexplored in computer vision. The structure and algorithms of

graph theory provide a natural language for space-time adaptive sensors.

4.2 Modified isoperimetric algorithm

In Chapter 3 it was mentioned that different definitions of combinatorial volume exist.

The Ncuts algorithm for image segmentation may be viewed as spectral partitioning with

a different notion of volume, and consequent Laplacian matrix (compare the combinato-

rial Laplacian derived in Dodziuk (1984) and Dodziuk and Kendall (1986)). In fact, Shi
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and Malik (2000) state that spectral partitioning (called the “average cut”) generates poor

image segmentations compared with Ncuts, suggesting that the notion of combinatorial

volume employed by Dodziuk and Kendall (1986) is more appropriate for image segmen-

tation. In our experience, application of the isoperimetric algorithm with the notion of

volume (Dodziuk, 1984) used in Chapter 3 produces lower quality image segmentations

than a modified version of the isoperimetric algorithm that uses volume defined for a set

of nodes, S, by Dodziuk and Kendall (1986)

VolS =
∑

i

di ∀vi ∈ S. (4.1)

The use of (4.1) to define volume, rather than (3.5), may be more appropriate for image

segmentation, since a region of nodes with uniform intensity will be more likely to be a

single object and register a higher volume, than a region of varying intensity that contains

the same number of nodes. In other words, an algorithm attempting to minimize the

isoperimetric ratio will be biased toward partitioning regions of uniform intensity rather

than regions that simply include a large number of nodes. For this reason, we use the

isoperimetric algorithm derived in Chapter 3 with a modified notion of volume to perform

data clustering and image segmentation.

Employing the notion of volume in (4.1), gives an isoperimetric ratio for an indicator

vector, x, as

h(x) =
xT Lx

xT d
. (4.2)

By substituting (4.1) for (3.5) and following the derivation for the isoperimetric partitioning

algorithm, the new equation used to solve for the potentials (as opposed to (3.13) is

L0x0 = d0, (4.3)

where d0 is the vector of degrees, d, with the entry corresponding to dg removed. In

the derivation of the isoperimetric algorithm from bottleneck paths given in Chapter 3,

(4.3) may be interpreted as representing the same procedure, where each node is weighted
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by its degree. Furthermore, the same circuit analogy exist for the modified isoperimetric

algorithm as that outlined in Chapter 3, except that the unity current sources are replaced

by current sources equaling the degree of each node.

Solving (3.13) for x0 yields a real-valued solution that may be converted into a partition

by setting a threshold, using the same methods as in Chapter 3. In order to generate a

clustering or segmentation with more than two parts, the algorithm may be recursively

applied to each partition separately, generating subpartitions and stopping the recursion

if the isoperimetric ratio of the cut fails to meet a predetermined threshold. We term this

predetermined threshold the stop parameter and note that since 0 ≤ h(x) ≤ 1, the stop

parameter should be in the interval (0, 1). Since lower values of h(x) correspond to more

desirable partitions, a stringent value for the stop criteria is small, while a large value

permits lower quality partitions (as measured by the isoperimetric ratio).

4.2.1 Algorithmic details

Choosing edge weights

In order to apply the isoperimetric algorithm to partition a graph, the position values (for

data clustering) or the image values (for image segmentation) must be encoded on the

graph via edge weights. Define the vector of data changes, cij , as the Euclidean distance

between the fields (e.g., coordinates, image RGB channels, image grayscale, etc.) on nodes

vi and vj . For example, if we represent grayscale intensities defined on each node with

vector b, then c = Ab. We employ the weighting function of (2.13). For a standard,

Cartesian, 4-connected lattice the geometric distance between each pair of nodes is equal,

and therefore we set β2 = 0. In order to make one choice of β1 applicable to a wide range

of data sets, we have found it helpful to normalize the vector c.

Ground point

We will demonstrate that, in the image processing context, the ground point may be viewed

from an attentional standpoint. In Chapter 3 it was determined that the best of three
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Figure 4·1: Dumbbell graph with uniform weights

random grounds consistently yielded a cut with lower isoperimetric ratio than choosing

to ground either the node of maximum degree or the node of minimum degree. However,

grounding the node of maximum degree appeared to be a good heuristic if the additional

cost of choosing the best cut of three random grounds was not acceptable. For purposes of

generating the figures in this chapter, the node of maximum degree was chosen as ground,

unless stated otherwise.

Figure 4·2 illustrates the effect of choosing different ground points on the solution to

(4.3). We have employed the dumbbell shape in Figure 4·1, discussed in Cheeger (1970) on

the relationship of the isoperimetric constant and the eigenvalues of continuous manifolds.

The left column (i.e., (a), (c), (e), and (g) in Figure 4·2) shows the potentials, x, solved for

using (3.13). The brightest node on the graph represents the ground point. For the rest of

the nodes, bright nodes are closer to ground (i.e., have lower potentials) and dark nodes are

further from ground. The right column (i.e., (b), (d), (f), and (h) in Figure 4·2) shows the

post-threshold function where the ratio cut method has been employed. The top two rows

indicate random ground points and the bottom two represent pathological ground points.

Of the two pathological cases, the third row example (i.e., (e) and (f) in Figure 4·2) uses

a ground in the exact center of the neck, while the last takes ground to be one node over

from the center. Although the grounding in the exact center produces a partition that does

not resemble the known ideal partition, grounding one node over produces a partition that

is nearly the same as the ideal, as shown in the fourth row example (i.e., (g) and (h) in



76

Figure 4·2). This illustrates that the solution is largely independent of the ground point,

except in the pathological case where the ground is on the ideal cut. Moreover, it is clear

that choosing a ground point in the interior of the balls is better than choosing a point

on the neck, which corresponds in some sense to our above rule of choosing the point with

maximum degree since a node of high degree will be in the “interior” of a region, or in an

area of uniform intensity in the context of image processing.

Summary of the algorithm

Applying the isoperimetric algorithm to data clustering or image segmentation may be

described in the following steps:

1. Find weights for all edges using equation (2.13).

2. Build the L matrix (2.5) and d vector.

3. Choose the node of largest degree as the ground point, vg, and determine L0 and d0

by eliminating the row/column corresponding to vg.

4. Solve (4.3) for x0.

5. Threshold the potentials x at the value that gives partitions corresponding to the

lowest isoperimetric ratio.

6. Continue recursion on each segment until the isoperimetric ratio of the subpartitions

is larger than the stop parameter.

4.3 Relationship to other graph partitioning methods

The relationship between the isoperimetric algorithm and spectral partitioning was ex-

plored in Chapter 3. It was demonstrated that the isoperimetric algorithm produces good

partitions for some families of graphs for which spectral partitioning is known to fail. The

Ncuts algorithm of Shi and Malik (2000) is essentially the spectral partitioning algorithm,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4·2: An example of the effects on the solution with different choices
of ground point for a problem with a well-known optimal partition. The
left column shows the potential function (brightest point is ground) for sev-
eral choices of ground while the right column shows thresholded partitions.
Uniform weights (β2 = 0) were employed.
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except that the authors implicitly choose the metric of Dodziuk and Kendall (1986) to de-

fine a combinatorial Laplacian matrix rather than the metric of Dodziuk (1984) typically

used to define the Laplacian in spectral partitioning. Specifically, the Ncuts algorithm

requires the solution of

D−
1

2 LD−
1

2 z = λz (4.4)

where D = diag(d). Therefore, although the spectral and Ncuts algorithms produce differ-

ent results when applied to a specific graph, they share many theoretical properties.

Eigenvector methods of graph partitioning have recently become popular (Perona and

Freeman, 1998; Sarkar and Soundararajan, 2000; Wang and Siskund, 2003), employing an

eigenvector of the Laplacian or adjacency matrix to perform the cut. In contrast, the

isoperimetric method requires the solution of a sparse linear system rather than the solu-

tion to the eigenvalue problem required by these methods. The Lanczos algorithm provides

an excellent method for approximating the eigenvectors corresponding to the smallest or

largest eigenvalues of a matrix with a time complexity comparable to the conjugate gra-

dient method of solving a sparse system of linear equations (Golub and Van Loan, 1996).

However, the eigenvector problem is less stable to minor perturbations of the matrix than

the solution to a system of linear equations, if the desired eigenvector corresponds to an

eigenvalue that is very close to other eigenvalues (see Golub and Van Loan (1996)). In

fact, for graphs in which the Fiedler value has algebraic multiplicity greater than one the

eigenvector problem becomes completely degenerate and the Lanczos algorithm may con-

verge to any vector in the subspace spanned by the Fiedler vectors (if it converges at all).

A square lattice with uniform weights is an example of a graph for which the Fiedler value

has algebraic multiplicity greater than unity, as is the fully connected graph with uniform

weights. Kuijaars (2000) raises additional concerns about the Lanczos method.

Previous work in network theory allows for a straightforward analysis of the sensitivity

of the isoperimetric, spectral, and normalized cuts algorithms. Here we specifically examine

the sensitivity to the edge weights for these three algorithms. Sensitivity to a single, general,

parameter, s, is developed in this section. Sensitivity computation for many parameters
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(e.g., all the weights in a graph) may be obtained efficiently using the adjoint method

(Vlach and Singhal, 1994).

4.3.1 Isoperimetric

Given the vector of degrees, d, the Laplacian matrix, L, and the reduced Laplacian matrix

L0, the isoperimetric algorithm requires the solution to

L0x0 = d0. (4.5)

The sensitivity of the solution to equation (4.5) with respect to a parameter, s, may be

determined from

L0
∂x0

∂s
= −

∂L0

∂s
x0 +

∂d0

∂s
. (4.6)

Since L0, x0 are known for a given solution to equation (4.5) and ∂L0

∂s
may be determined

analytically, ∂x0

∂s
may be solved for as a system of linear equations (since L0 is nonsingular)

in order to yield the derivative at a point x0.

4.3.2 Spectral

The spectral method solves the equation

Lx = λ2x, (4.7)

where λ2 is the Fiedler value. The sensitivity of the solution to (4.7) to a parameter s is

more complicated, but proceeds in a similar fashion from the equation

∂L

∂s
x + L

∂x

∂s
=

∂λ2

∂s
x + λ2

∂x

∂s
. (4.8)

The term ∂λ2

∂s
may be calculated from the Rayleigh quotient for λ2 and the chain rule. The

Rayleigh quotient is

λ =
xT Lx

xT x
. (4.9)
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The chain rule determines ∂λ2

∂s
by ∂λ2

∂s
= ∂λ2

∂x
∂x
∂s

. This may be solved by finding ∂λ2

∂x
from

the Rayleigh quotient via

∂λ2

∂x
= 2Lx(xT x)−1 − 2xT Lx(xT x)−2x. (4.10)

Equation (4.10) allows us to solve for ∂λ2

∂s
via equations (4.8) and (4.10)

(

L −

(

∂λ2

∂x

T

x + λ2

)

I

)

∂x

∂s
=

∂L

∂s
x. (4.11)

Equation (4.11) also gives a system of linear equations which may be solved for ∂x
∂s

since

all the other terms are known or may be determined analytically.

4.3.3 Normalized Cuts

The normalized cuts algorithm of Shi and Malik (2000) requires the solution to

D−
1

2 LD−
1

2 x = λ2x, (4.12)

where D is a diagonal vector with Dii = di. In a similar fashion to the above treatment on

the spectral algorithm, the sensitivity of x with respect to a parameter s may be determined

using the Rayleigh quotient and the chain rule.

Employing the chain rule, taking the derivative of equation (4.12) with respect to s and

rearranging yields

(

D−
1

2 LD−
1

2 −

(

∂λ2

∂x

T

x + λ2

)

I

)

∂x

∂s
=

(

2
∂D−

1

2

∂s
LD−

1

2 + D−
1

2

∂L

∂s
D−

1

2

)

x. (4.13)

Again, this is a system of linear equations for ∂x
∂s

. For Ncuts, the eigenvalue corresponds

to D−
1

2 LD−
1

2 instead of L, so ∂λ2

∂x
must be recomputed from the Rayleigh quotient. The

result of this calculation is

∂λ2

∂x
= 2D−

1

2 LD−
1

2 x(xT x)−1 − 2xT D−
1

2 LD−
1

2 x(xT x)−2x. (4.14)
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4.3.4 Sensitivity to a weight

Using the results above, it is possible to analyze the effect of a specific parameter by finding

∂L
∂s

, ∂d
∂s

and ∂D−
1

2

∂s
for the specific parameter in question. The value for ∂L0

∂s
is determined

from ∂L
∂s

simply by deleting the row and column corresponding to the grounded node. For

a specific weight, wij , these quantities become

(

∂d

∂wij

)

vi

=















1 if eij is incident on vi,

0 otherwise,

(4.15)

and
(

∂D−
1

2

∂wij

)

vpvq

=















−1
2d

−
3

2

p if p = q, p = i or p = j,

0 otherwise.

(4.16)

The matrix ∂L
∂wij

equals the L matrix of a graph with an edge set reduced to just E = {eij}.

The degree of node vi is specified by di.

Equations (4.6), (4.8) and (4.13) demonstrate that the derivative of the isoperimetric

solution is never degenerate (i.e., the left hand side is always nonsingular for a connected

graph), whereas the derivative of the spectral and normalized cuts solutions may be de-

generate depending on the current state of the Fiedler vector and value.

4.4 Applications

4.4.1 Clustering applied to examples used by Zahn

When humans view a point cluster, certain groupings immediately emerge. The properties

that define this grouping have been described by the Gestalt school of psychology . Un-

fortunately, these descriptions are not precisely defined and therefore finding an algorithm

that can group clusters in the same way has proven very difficult. Zahn (1971) used his

minimal spanning tree idea to try to capture these Gestalt clusters. To this end, he estab-

lished a collection of point sets with clear cluster structure (to a human), but which are

difficult for a single algorithm to group.
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Figure 4·3: An example of partitioning the Gestalt-inspired point set chal-
lenges of Zahn using the isoperimetric algorithm. The x’s and o’s represent
points in different partitions. β2 = 50.

We stochastically generated point clusters to mimic the challenges Zahn issues to auto-

matic clustering algorithms. For a set of points, it is not immediately clear how to choose

which nodes are connected by edges. In order to guarantee a connected graph, but still

make use of local connections, we generated an edge set from the Delaunay triangulation

of the points. Edge weights were generated as a function of Euclidean geometric distance,

as in (2.13).

The clusters and partitions are shown in Figure 4·3. Each partition is represented by

a symbol, with the ‘x’s and ‘o’s indicating the points belonging to the same partition.

Partitions were generated using the median cut on a single solution to (3.13). Ground

points were chosen using the maximum degree rule discussed above.
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Of these clusters, it is shown in Figure 4·3 that the algorithm performs as desired on all

groups except that which requires grouping into lines. This “failure” in the Gestalt sense

may be viewed as the same “success” recorded in chapter 3 against Guattery and Miller’s

roach example. In both cases the “lines” have a small connection to each other at one end

and practically no connection at the other. In both the Gestalt and roach graphs, a better

partition (from the isoperimetric standpoint) is obtained by cutting the “body” from the

“antennae”.

4.4.2 Methods of image segmentation

As in the case of point clustering, it is not clear, a priori, how to impose a graph structure on

an image. Since pixels define the discrete input, a simple choice for nodes is the pixels and

their values. Traditional neighborhood connectivity employs a 4-connected or 8-connected

topology (Jain, 1989). Another approach, taken by Shi and Malik (2000) is to use a fully

connected neighborhood within a parameterized radius from each node. We chose to use

a minimal 4-connected topology, since the matrix L becomes less sparse as more edges are

added to the graph. Consequently, a graph with more edges requires more time to solve

(3.13). Edge weights were generated from intensity values in the case of a grayscale image

or from RGB color values in the case of a color image using (2.13).

A similar measure of partition quality has been employed by other authors (e.g., (Hen-

drickson and Leland, 1995; Schreiber and Martin, 1999)) to develop image segmentation

algorithms, but a different notion of volume (e.g., the algorithm of Hendrickson and Le-

land (1995) is defined only for planar graphs) and different methods for achieving good

partitions under this metric of quality separate their work from ours.

For a 4-connected lattice graph (i.e., a standard image), the algorithm is controlled by

only two parameters: the scale parameter β1 of (2.13) and the stop parameter used to

end the recursion. The scale affects how sensitive the algorithm is to changes in feature

space (e.g., RGB, intensity), while the stop parameter determines the maximum accept-

able isoperimetric ratio a partition must generate in order to accept it and continue the
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Figure 4·4: Image used to benchmark the effects of a changing scale and
stop parameter.

recursion. In order to illustrate the dependence of the results on parameterization, a sweep

of the two-dimensional parameter space was performed on individual natural images. An

example of this parameter sweep is shown in Figure 4·5 using the natural image in Figure

4·4, with scale on the vertical and stop on the horizontal. It can be seen that the solution is

similar over a broad range with respect to changes in scale and that the effect of raising the

stop parameter (i.e., making more partitions admissible) is to generate a greater number

of small partitions.

4.4.3 Completion

Study of the classic Kaniza illusion (Fineman, 1996) suggests that humans segment objects,

based on something beyond perfectly connected edge elements.

The isoperimetric algorithm was used to segment the image in Figure 4·6, using only

one level of recursion with all nodes corresponding to the black “inducers” removed. In

this case, choice of the ground point is important for determining the single bipartition. If

the ground point is chosen inside the illusory triangle, the resulting partition is the illusory

triangle. However, if the ground is chosen outside, the triangle partition is not produced,

but instead a partition that hugs the corner in which the ground is located. In this way,

the ground point may be considered as representing something like an “attentional” point,

since it induces a partition that favors the region of the ground point. However, note that
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Figure 4·5: This tiled figure demonstrates the results of varying the scale
(vertical) and stop (horizontal) parameters when processing the image in
Figure 4·4. Scale range: 300–30, Stop range: 1 × 10−5.5–1 × 10−4.5.

these partitions are compatible with each other, suggesting that the choice of ground may

affect only the order in which partitions are found.

4.4.4 Segmentation of natural images

Having addressed issues regarding stability and completion, we proceed to examples of the

segmentation found by the isoperimetric algorithm when applied to natural images. Exam-

ples of the segmentation found by the isoperimetric algorithm for some natural images are

displayed in Figure 4·7. All results in the example segmentations were obtained using the

same two parameters. It should be emphasized in comparisons of segmentations produced

by the Ncuts algorithm that the authors of Ncuts make use of a more fully connected

neighborhood as well as fairly sophisticated spatial filtering (e.g., oriented Gabor filters

at multiple scales) in order to aid in textural segmentation. The demonstrations with the

isoperimetric algorithm used a basic four-connected topology and no spatial filtering at

all. Consequently, the segmentations produced by the isoperimetric algorithm should be
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(a)

(b)

(c)

Figure 4·6: The Kaniza triangle illusion with the single bipartition outlined
in black and the ground point marked with an ‘x’. (a) The graph being
segmented. (b) Isoperimetric partition using a ground point in the corner.
(c) Isoperimetric partition using a ground point inside the triangle. Uniform
weights (β1 = 0) were employed in both cases.
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expected to perform less well on textural cues. However, for general grayscale images,

it appears to perform at least as well as Ncuts, but with increased numerical stability

and a speed advantage of more than one order of magnitude (based on our TMMATLAB

implementation of both algorithms). Furthermore, because of the implementation (e.g.,

4-connected lattice, no spatial filtering), the isoperimetric algorithm makes use of only two

parameters, compared to the four basic parameters (i.e., radius, two weighting parameters

and the recursion stop criterion) required in Shi and Malik (2000).

The asymptotic (formal) time complexity of Ncuts is roughly the same as the isoperi-

metric algorithm. Both algorithms have an initial stage in which nodal values are com-

puted that requires approximately O(n) operations (i.e., via Lanczos or conjugate gradient).

Generation of the nodal values is followed in both algorithms by an identical cutting op-

eration. Using the TMMATLAB sparse matrix solver for the linear system required by

the isoperimetric algorithm and the Lanczos method (TMMATLAB employs ARPACK

(Lehoucq et al., 1998) for this calculation) to solve the eigenvalue problem required by

Ncuts, the time was compared for a 10000×10000 L matrix (i.e., a 100×100 pixel image).

Since other aspects of the algorithms are the same (e.g., making weights from the image,

cutting the indicator vector, etc.), and because solving for the indicator vector is the main

computational hurdle, we only compare the time required to solve for the indicator vector.

On a 1.4GHz AMD Athlon with 512K RAM, the time required to approximate the Fiedler

vector in (4.4) was 7.1922 seconds while application of the direct solver to the isoperimetric

partitioning (3.13) required 0.5863 seconds. In terms of actual computation time (using

TMMATLAB), this result means that solving the crucial equation for the isoperimetric

algorithm is more than an order of magnitude faster than solving the crucial equation

required by the Ncuts algorithm.

4.4.5 Stability

Stability of the solution for both the isoperimetric algorithm and the spectral algorithms

differs considerably, as does the perturbation analysis for any solution to a system of
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(a)
ESLab0002

(b)
ESLab0002

segments

(c)
ESLab0005

(d)
ESLab0005

segments

(e)
ESLab0009

(f)
ESLab0009

segments

(g)
ESLab0015

(h)
ESLab0015

segments

(i)
ESLab0021

(j)
ESLab0021

segments

(k)
ESLab0007

(l)
ESLab0007

segments

(m)
ESLab0024

(n)
ESLab0024

segments

(o)
ESLab0027

(p)
ESLab0027

segments

(q)
ESLab0033

(r)
ESLab0033

segments

(s)
ESLab0043

(t)
ESLab0043

segments

(u)
ESLab0052

(v)
ESLab0052

segments

(w)
ESLab0054

(x)
ESLab0054

segments

Figure 4·7: Examples of segmentations produced by the isoperimetric al-
gorithm using the same parameters (β1 = 95, stop = 10−5). More segmen-
tation results from the same database may by found at http://eslab.bu.
edu/publications/grady2003isoperimetric/. Images may be obtained
from http://eslab.bu.edu/resources/imageDB/imageDB.php
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equations versus the solution to the eigenvector problem (Golub and Van Loan, 1996).

Differentiating equations (3.13) and (4.4) with respect to an edge weight reveals that the

derivative of the solution to the spectral (3.24) and Ncuts (4.4) equations is highly depen-

dent on the current Fiedler value, even taking degenerate solutions for some values (see

Appendix B). By contrast, the derivative of the isoperimetric solution has no poles. Insta-

bility in spectral methods due to algebraic multiplicity of the Fiedler value is a common

problem in implementation of these algorithms (see Hendrickson and Leland (1995)). This

analysis suggests that the Ncuts algorithm may be more unstable to minor changes in an

image than the isoperimetric algorithm.

The stability of Ncuts (our implementation) and the isoperimetric algorithm is com-

pared by the resistance of their output to noise via two different comparisons. First, each

algorithm was applied to an artificial image of a white circle on a black background, using a

4-connected lattice topology. Increasing amounts of additive, multiplicative and shot noise

were applied, and the number of segments output by each algorithm was recorded. Results

of this comparison are recorded in Figure 4·8.

In order to visually compare the result of the segmentation algorithms applied to pro-

gressively noisier images, the isoperimetric and Ncuts algorithms were applied to a rela-

tively simple natural image of red blood cells. The isoperimetric algorithm operated on

a 4-connected lattice, while Ncuts was applied to an 8-connected lattice, since we had

difficulty finding parameters that would cause Ncuts to give a good segmentation of the

original image, if a 4-connected lattice was used.

In both comparisons, additive, multiplicative, and shot noise were used to test the sen-

sitivity of the two algorithms to noise. The additive noise was zero mean Gaussian noise

with variance ranging from 1–20% of the brightest luminance. Multiplicative noise was

introduced by multiplying each pixel by a unit mean Gaussian variable with the same vari-

ance range as above. Shot noise was added to the image by randomly selecting pixels that

were fixed to white. The number of “shots” ranged from 10 to 1,000. The above discussion

of stability is illustrated by the comparison in Figure 4·9. Although additive noise heavily
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(a) Additive noise

(b) Multiplicative noise

(c) Shot noise

Figure 4·8: Stability analysis relative to additive, multiplicative and shot
noise for an artificial image of a white circle on a black background. The
x-axis represents an increasing noise variance for the additive and multi-
plicative noise, and an increasing number of “shots” for the shot noise. The
y-axis indicated the number of segments found by each algorithm. The solid
line represents the results of the isoperimetric algorithm and the dashed
line represents the results of the Ncuts algorithm. The underlying graph
topology was the four-connected lattice with β1 = 95 for the isoperimetric
algorithm and β1 = 35, Ncuts stop criterion = 10−2 (relative to the Ncuts
criterion) and isoperimetric stop criterion = 10−5.
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degrades the solution found by both algorithms, multiplicative noise appears to slightly

degrade the solution found by Ncuts while the introduction of shot noise significantly af-

fects the convergence of Ncuts to any solution. The solution found by the isoperimetric

algorithm appeared resilient to both multiplicative and shot noise.

(a) Additive noise

Image Iso Ncuts
Noise

(b) Multiplicative noise

Image Iso Ncuts

(c) Shot noise

Image Iso Ncuts

Figure 4·9: Stability analysis relative to additive, multiplicative and shot
noise. Each row represents an increasing amount of noise of the appropri-
ate type. The top row in each subfigure is the segmentation found for the
blood1.tif image packaged with TMMATLAB (i.e., zero noise). Each fig-
ure is divided into three columns representing the image with noise, isoperi-
metric segmentation and Ncuts segmentation from left to right respectively.
The underlying graph topology was the four-connected lattice with β1 = 95,
Ncuts stop criterion = 10−6 (relative to the Ncuts criterion) and isoperi-
metric stop criterion = 10−8. (a) Additive noise. (b) Multiplicative noise.
(c) Shot noise.
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4.5 Conclusion

We have applied the isoperimetric algorithm for graph partitioning to the data clustering

and image segmentation problem. The algorithm was compared with Ncuts to demonstrate

that it is simpler, faster, and more stable, while providing visually comparable results with

less pre-processing.

Since the graph representation is not tied to any notion of dimension, the algorithm

applies equally to graph-based problems in N-dimensions as it does to problems in two

dimensions. Suggestions for future work are applications to segmentation in space-variant

architectures, supervised or unsupervised learning, 3-dimensional segmentation of mesh-

based objects, and the segmentation/clustering of other areas that can be naturally mod-

eled with graphs.
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Chapter 5

Small world

5.1 Introduction

Traditional solution methods to partial differential equations (e.g., finite differences, finite

elements) typically culminate in the solution to a large, sparse system of linear equations.

The sparsity pattern of the matrix corresponds directly to the topology of the sampling

grid. In situations where the goal is to model physical systems (e.g., heat flow, electrostatic

fields), the choice of topology is limited to a 4- or 8-connected grid (in 2D). However, many

problem domains fail to have a clear topology, yet require the solution to a large, sparse

system of equations. Examples include unsupervised clustering of points in space or the

collection of pixels in image processing. The arbitrary character of data topology has

generally resulted in the choice of locally connected data (e.g., Delaunay triangulation,

K-nearest-neighbors), although more exotic local topologies are sometimes used (e.g., Shi

and Malik (2000)). In Chapter 4, a simple, 4-connected topology was employed for image

analysis, largely because fewer edges results in a shorter execution time (i.e., the matrix L

is more sparse).

Given that some situations allow for the choice of topology, one may ask: What is the

best topology for the problem? Obviously, the answer to this question will depend heavily

on the problem itself and solution being sought. Regardless of the specifics of the problem,

a faster solution to the system of linear equations is frequently desirable. We demonstrate

here that it is possible to significantly accelerate the convergence of standard iterative

methods for the solution to a system of linear equations with only a tiny additional cost

per iteration. This idea holds for any Krylov subspace method, which includes the popular
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conjugate gradients and Lanczos methods (Golub and Van Loan, 1996).

5.2 Convergence of Krylov subspace methods

Iterative, Krylov subspace algorithms are the methods of choice for solving both the system

of linear equations (conjugate gradients) and the eigenvector problem (Lanczos method)

(Golub and Van Loan, 1996). Define a Krylov subspace of an n × n matrix A, an n × 1

vector x0 and an integer k as

K(A; x0; k) = span(x0, Ax0, A
2x0, . . . , A

(k−1)x0). (5.1)

The solution found at each iteration, i, of conjugate gradients is the solution to Ax = b

projected onto the Krylov subspace K(A, Ax0 − b, i) (Dongarra et al., 1991).

Since square matrices are isomorphic to graphs, a graph theory interpretation of matrix

operations often lends fresh insight into the dynamics (Gilbert, 1994). From the standpoint

of graph theory, each iteration of a Krylov subspace method propagates information one

edge. For example, if x0 represents an impulse function, then that impulse will have

spread only k edges after k iterations. This analogy allows for the interpretation of Krylov

subspace iterative methods as a mixing process (Gremban, 1996).

In fact, this analogy can be made explicit by considering the solution to a diffusion

process over a graph (e.g., discrete lattice) with discrete time steps. For the graph Laplacian

matrix (Merris, 1994), L, and current state, xi, the discrete diffusion equation may be

written

xi+1 = xi + ∆tLxi, (5.2)

meaning that each iteration xi is the sum of a polynomial in L multiplied by the vector

representing the initial state x0. In other words, xi is a vector in the subspace K(L, x0, i−1).

It is this analogy between conjugate gradients and a mixing process which led to the

observation that the rate of convergence will be a function of graph diameter (Gremban

et al., 1995). In other words, since a Krylov subspace iterative method only spreads
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information along one edge with each iteration, the algorithm cannot converge until the

information has spread to all nodes in the graph. Therefore, the minimum number of

iterations is the length of the longest optimal path between any two nodes (i.e., the graph

diameter). Clearly, the above statement assumes that the initial guess does not happen to

be correct.

5.2.1 Small worlds

In their landmark paper, Watts and Strogatz (1998) define what they term a “small world”

topology based on the six degrees of separation or small world phenomenon found in social

networks. The main property of a small world network is that it is locally connected but

has a small graph diameter.

Watts and Strogatz demonstrate that a graph with these properties may be obtained

by “interpolating” between a typical, locally connected graph and the random graphs first

defined by Erdös and Renyi (1960, 1959). Most remarkably, Watts (1999) demonstrates

that a locally connected graph may be made into a small world graph (i.e., given a small

diameter) with the addition of only a tiny number of random edges. Figure 5·1 shows a

lattice substrate and a Delaunay triangulation substrate with a small random edges added.

Our proposal for increasing the convergence rate of Krylov subspace methods in sit-

uations with a negotiable topology is therefore to choose a locally connected “substrate”

topology (e.g., lattice, nearest-neighbor) and add in a tiny number of random edges. Based

on the intuition above, since the graph diameter is dramatically decreased by the addition

of these new edges, the convergence rate of the iterative method should substantially de-

crease. Furthermore, the computational increase per iteration should be negligible, since

only a tiny number of additional edges were added. The next section attempts to address

the following issues:

1. What is the effect of adding a few random edges on convergence?

2. What is the effect of adding a few random edges on the number of computations?
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(a) (b)

(c) (d)

Figure 5·1: (a) Lattice substrate. (b) Delaunay triangulation substrate.
(c) Small world graph built on a lattice substrate. (d) Small world graph
built on a Delaunay triangulation substrate.
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Figure 5·2: Iterations required to converge on a solution for the isoperi-
metric algorithm with conjugate gradients as the number of random edges
added increases for a 256 × 256 4-connected lattice with uniform weights.
The dashed line represents the number of iterations required for convergence
with the unaltered 4-connected topology.

3. How does the addition of these random edges affect the solution?

5.3 Results

Several problems require the solution to a system of linear equations on a graph. Among

these are the Dirichlet problem on a graph (Doyle and Snell, 1984) and the isoperimet-

ric algorithm of Chapter 3. For purposes of the following examples, we demonstrate the

convergence of the isoperimetric algorithm with a uniformly weighted 4-connected lattice

substrate. Figure 5·2 demonstrates that the number of iterations required to obtain con-

vergence drops dramatically with the addition of only a tiny number of random edges.
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(a) (b) (c)

Figure 5·3: (a) Original (input) image. (b) Segmentation obtained with
unaltered 4-connected topology (β1 = 95, stop= 10−5). (c) Segmentation
obtained with the addition of 200 random edges (β1 = 95, stop= 10−5).

Recall that the number of multiply operations per iteration in a Krylov subspace

method is equal to the number of nonzeros in the matrix. In the case of a 4-connected

lattice, the number of nonzeros, p, is p ≤ 8n. By contrast, the fully connected graph

corresponds to a matrix with n2 nonzero elements. Every random edge added incurs an

additional 2 nonzero elements (due to symmetry). Therefore, the amount of computation

required (i.e., number of multiply operations) per iteration using a small world graph

with a few extra edges is essentially the same as the computation required to process on

the substrate graph.

Perturbation theory allows for the study of the effect on the solution to an Ax = b

equation when the matrix A is perturbed (Golub and Van Loan, 1996). Since the solution,

x, clearly changes with a change in A (i.e., a change in topology), it is useful to examine the

effect of adding random edges on the solution. For purposes of applying the isoperimetric

algorithm of Chapter 4 to an image, the effect of a significant number of edges (as regards

the number of iterations required for convergence) is shown in Figure 5·3 to have a minimal

effect on the final solution.

Fully connected graphs cause the solution at each node for an Ax = b problem to depend

heavily on every other node, since each node is connected to all other nodes. For some
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problems (e.g., unsupervised clustering of points in feature space) this “global” approach

appears to be a good choice. However, the tremendous costs involved in sorting and

processing the large, full, matrix corresponding to a fully connected graph often outstrips

the resources of a desktop computer, even when the number of nodes is small. Watts (1999)

argues that a small world graph has many of the same properties of a fully connected graph,

based on the fact that the small diameter of the graph allows more global information

sharing. Therefore, generating a small world graph through the addition of random edges

may not only reduce the required computations, but may also produce a solution that is

close to the potentially desirable solution obtained by using a fully connected topology.

5.4 Conclusion

The purpose of this chapter is to introduce the idea of employing a small world topology

to increase the convergence rate of Krylov subspace iterative algorithms by adding a small

number of random edges. We have found that the increase in speed with the addition of

random edges is almost an order of magnitude greater than the speed required to converge

on the unaltered substrate. Although problems that are intended to model the physical

world do not allow for arbitrary choices of topology, it is frequently the case that data is

given at spatial locations (e.g., pixels in images) without any indication of how a topology

should be defined. In these cases, we have found that the addition of a small number

of random edges to the substrate topology increases the convergence rate of an iterative

Krylov subspace algorithm by a significant amount.
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Chapter 6

Pyramid-based image segmentation

6.1 Introduction

The use of a multi-scale image representation to enhance image analysis algorithms has

a long history dating back to Witkin (1983). Typically (Wright and Acton, 1997; Chen

and Acton, 1998; Acton, 1996; Comer and Delp, 1995; Pachai, 1998), a multi-resolution

representation is employed both for speed and robustness against noise by performing the

analysis at the coarsest level and projecting the solution back to the original image. This

approach is very efficient, since the coarse levels in the pyramid are substantially smaller

than the original. The robustness of an algorithm to noise is also increased substantially,

since the filtering required to obtain images at coarser resolutions dampens or eliminates

noise altogether.

The approach taken in this chapter is to employ a pyramid structure in a different

manner. Viewing the pyramid as a graph with fixed topology, we ignore the distinction

between levels and simply treat the pyramid as a graph structure to which image values are

attached. Applying the isoperimetric segmentation algorithm of Chapter 4 to the pyramid,

we demonstrate improved quality segmentations in terms of detecting objects with blurred

boundaries and consequent edge localization for image segmentation. Although the use of

a pyramid architecture incurs the additional cost of more nodes, we demonstrate that this

fact is mitigated or entirely compensated by the fact that the graph diameter is dramatically

decreased.

Part of the motivation for the approach comes from the architecture of biological vision

systems, which appear to have multiple representations of the visual field at progressively
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coarser resolutions. Furthermore, the use of graph-based algorithms allows us to analyze

image data on space-variant, multi-resolution vision architectures.

6.2 Connected Pyramid Architecture

Traditional pyramid methods of image analysis employ a Gaussian or Laplacian filter (Burt

and Adelson, 1983) to generate new levels. After reaching an arbitrary coarse resolution,

the image is analyzed using a standard segmentation algorithm, such as autoregressive

models (Comer and Delp, 1995), diffusion (Acton, 1996), watersheds (Wright and Acton,

1997) or adaptive thresholding (Pachai, 1998). The solution on the coarse level is then

projected down and refined until the original, fine resolution, image is achieved. Other

pyramidal approaches employ multi-level region growing (Koster, 1997), adaptively linking

nodes between levels (Rehrauer et al., 1998), or using the levels to build a feature vector

that may be analyzed by a standard clustering algorithm (Rezaee, 2000).

Our approach begins, like those above, by building a pyramid of progressively coarser

images and linking them with the original in a standard quadtree topology. We term this a

connected pyramid. Once the structure is built, we differ from the above approaches by

ignoring the distinction between levels and applying graph processing algorithms directly

to the structure. This approach means that segments may exist between multiple levels.

In order to perform graph-based image processing, the connections within layers are

made explicit. Taking the within layer topology to be the standard 4/8-connected or a

radially connected topology (Shi and Malik, 2000) results in the three layer connected

pyramids in figure 6·1.

Since we want the algorithm to be sufficiently general such that shift-invariant spaces

are not assumed (e.g., for convolution), the values at upper levels are determined from

their children’s mean or median value. Although we lose some properties of the Gaussian

filter (e.g., preserving average grayscale, etc), this general framework admits trees built

from space-variant image representations. Other approaches to transferring image values

from lower levels to higher levels might include the combinatorial diffusion operator.
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(a) (b) (c)

Figure 6·1: Topology of the connected pyramid graph with 4-connected
(a), 8-connected (b), and radius = 5 connected (c) within level connections.

Although any graph-based image analysis algorithm could be applied to the connected

pyramid (e.g., Shi and Malik (2000); Perona and Freeman (1998); Sarkar and Soundarara-

jan (2000); Wang and Siskund (2003)), we choose to apply the isoperimetric algorithm of

Chapter 4 for purposes of the current work.

Since (4.3) is a large, sparse, set of linear equations, it is most efficiently solved using

the conjugate gradients algorithm (Golub and Van Loan, 1996). As reviewed in Chapter

5, conjugate gradients (or any Krylov subspace iterative method) may be viewed as a

mixing process, meaning that convergence is a function of graph diameter (Gilbert, 1994;

Gremban, 1996; Gremban et al., 1995). The graph diameter in an n×n Cartesian lattice is

2n, while the addition of each new level causes the graph to have half the diameter of the

previous level, to a minimum diameter of 2 log2(n) for a full quadtree pyramid. Therefore,

despite the fact that the addition of new levels requires the solution of (4.3) for more

nodes (to a limit of 4
3(n×n)), the graph diameter decreases dramatically with the addition

of new levels, meaning that conjugate gradients should converge faster. In the results

section, the effect of decreasing graph diameter is shown to almost entirely compensate for

the additional nodes in terms of computational efficiency. In summary, the quality of the

pyramidal isoperimetric segmentation is improved while incurring a negligible additional

computational cost.
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6.3 Results

6.3.1 Speed

In order to determine the mitigating effect of decreased graph diameter on the solution

to (4.3), we varied the number of levels used in a 512 × 512 lattice with uniform weights

and measured the number of iterations required for convergence of the conjugate gradients

method. However, this measure can be misleading since the number of computations per

iteration increases as the cardinality of the node and edge sets increases. In order to cap-

ture the computational efficiency of conjugate gradients in solving (4.3) on a lattice and a

pyramid, the number of multiply operations required to solve (4.3) was also calculated.

Figure 6·2 demonstrates that the number of iterations required for convergence decreases

significantly as new levels are incorporated into the graph, such that the number of itera-

tions required for convergence for a full pyramid is slightly greater than half that required

for a lattice. The computational effect of reducing the number of iterations required for

convergence is also displayed in Figure 6·2, demonstrating that the improved segmenta-

tions obtained from a pyramid architecture incur less than 7% additional computations.

This result represents significant improvement over the additional computations of 33%

expected by a an algorithm that is linear in the number of nodes.

6.3.2 Segmentation quality

Due to the additional levels in a connected pyramid, more global information is used by the

isoperimetric algorithm in determining good partitions. This additional global information

generates improved localization of blurred boundaries, resulting in higher quality edge

detection. Since there is an increased number of edges in a segment boundary, as a result

of the multiresolution representation, the stop parameter of Chapter 4 must be increased.

In other words, since the isoperimetric ratio of the segments in the pyramid representation

is expected to be larger (since the segments have boundaries that exist in multiple levels),

the threshold for an acceptable partition must be raised slightly.

We employed the weighting function of (2.13), with β2 = 0. Since this weighting
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(a) (b)

Figure 6·2: (a) Number of iterations required for convergence of conjugate
gradients for (4.3) on a 512×512 lattice as the number of levels in the pyra-
mid are added. Dashed line represents the number of iterations required to
converge for a simple (non-pyramid) lattice. (b) Total number of multi-

ply operations required to perform conjugate gradients as the number of
levels increases. Dashed line represents the number of multiply operations
required for a simple (non-pyramid) lattice.

function is nonlinear, a ramp edge will result in a series of medium sized weights instead

of the tiny weight that typically signifies an edge. However, in a pyramid architecture,

the burred edges remain sharp on some level of the pyramid, allowing the algorithm to

properly make use of them in determining a segmentation. In Figure 6·3 we blurred an

image of blood cells and compared the results of the connected pyramid segmentation with

the lattice segmentation using the isoperimetric algorithm. Despite the fact that each

level in the connected pyramid is locally connected (a 4-connected lattice in this case), the

blurred edges are detectable because the boundaries remain sharp on the upper levels of

the pyramid.

That the connected pyramid based isoperimetric algorithm makes better use of blurred

edges suggests that the quality of natural image segmentation will be increased. In Fig-

ure 6·4 the lattice-based and pyramid-based isoperimetric segmentations are compared

for several natural images. One can see that difficult edges are better localized with the
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Image Lattice Pyramid
Blur

Figure 6·3: Comparison of segmentations produced by lattice-based and
pyramid-based isoperimetric algorithm in response to increased blur. Left:
Image with increased variance Gaussian kernel (1–7 pixel variance). Middle:
Lattice-based segmentation (β1 = 95, stop = 1.0×10−5). Right: Pyramid-
based segmentation (β1 = 180, stop = 2.0 × 10−5).
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(a)
ESLab0002

(b) Lattice (c) Pyra-
mid

(d)
ESLab0002

(e) Lattice (f) Pyra-
mid

(g)
ESLab0002

(h) Lattice (i) Pyra-
mid

(j)
ESLab0002

(k) Lattice (l) Pyra-
mid

Figure 6·4: Comparison of images segmented with pyramid (β1 = 180,
stop= 10−5) and lattice (β1 = 95, stop= 10−5) based isoperimetric al-
gorithms. More examples of the segmentations produced by the pyramid-
based algorithm may be found at http://eslab.bu.edu/publications/

2003/grady2003connected/.

pyramid-based algorithm.

6.4 Conclusion

Segmentation algorithms that input an arbitrary graph with image values attached to the

nodes and return a set of node labels require no modification to enable them to operate

on a connected pyramid. The multiresolution image representation results in enhanced

segmentations, on account of an increased resilience to blurred edges and noise. Since

the isoperimetric algorithm uses a conjugate gradient solver and the graph diameter of the

pyramid is much smaller, the enhanced segmentations require very little additional cost, de-

spite a larger node set. Therefore, the use of a connected pyramid to perform isoperimetric

segmentation results in higher quality segmentations at only marginally higher computa-

tional costs. As a side effect, segmentations at lower resolutions are also obtained, which
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might allow an object recognition system to operate at different resolutions as the result

of one pass of the segmentation algorithm. The preceding suggests that the isoperimetric

algorithm should be used with the connected pyramid whenever a fast conjugate gradient

solver is available.
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Chapter 7

Graph interpolation

7.1 Introduction

Uniformly sampled images are conventionally represented via 4-connected or 8-connected

(Cartesian) grids. However space-variant images require a more flexible image topology.

In this thesis, we have attempted to further develop the tools necessary for performing

space-variant machine vision on a graph-theoretic structure.

This chapter addresses the problem of how to interpolate nodal data on a graph, and

then demonstrates applications to image processing. An algorithm is presented that allows

interpolation from known values on the nodes of a graph to missing data in such a way that

the interpolated values are “smooth”. The method is to solve the combinatorial Laplace

equation with Dirichlet boundary conditions given by the known values. A solution to

the combinatorial Laplace equation has several desirable properties in the context of an

interpolation method (see below). Both isotropic and anisotropic interpolation are handled

similarly. Furthermore, use of the algorithm is independent of the dimension in which

a graph is embedded. Combinatorial differential operators corresponding to the vector

calculus operators Div and Grad are used to develop combinatorial versions of the Laplace

and Laplace-Beltrami operators. This homology between continuum and combinatorial

(graph) algorithms is well known in the literature of circuit theory, mechanical engineering,

and related areas in which discretizations of partial differential equations play a central role

(Strang, 1986). The solution to the Laplace equation is analogous to solving an equivalent

electrical circuit. The solution to problems of this type, as first noted by Maxwell (1991a,b),

represents a minimal power dissipation state in the electrical circuit formulation, as shown
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by Dirichlet’s Principle (Courant, 1950; Morse and Feshbach, 1953). An application of these

ideas to isotropic and anisotropic image interpolation is presented, and a brief discussion

of the relation of this work to anisotropic diffusion is outlined.

7.2 Dirichlet problem

Solving the Laplace equation in order to “fill-in” missing values has been described in the

context of digital elevation models (Burrough, 1986; Wood and Fisher, 1993), image editing

(Elder and Goldberg, 2001), and is even used by the TMMATLAB function roifill.m

to fill in regions of missing data in images. What is new about the present work is the

generalization of this interpolation concept to arbitrary geometries, topologies and metrics,

i.e., to an image representation based on an arbitrary graph rather than on the familiar

uniform raster.

7.2.1 Definitions

The Dirichlet integral may be defined as

D[u] =
1

2

∫

Ω

|∇u|2dΩ, (7.1)

for a field u and region Ω (Courant and Hilbert, 1989b). This integral arises in many

physical situations, including heat transfer, electrostatics and random walks.

A harmonic function is a function that satisfies the Laplace equation

∇2u = 0. (7.2)

The problem of finding a harmonic function subject to its boundary values is called the

Dirichlet problem. The harmonic function that satisfies the boundary conditions mini-

mizes the Dirichlet integral, since the Laplace equation is the Euler-Lagrange equation for

the Dirichlet integral (Morse and Feshbach, 1953). In a graph setting, points for which

there exist a fixed value (e.g., data nodes) are termed boundary points. The set of
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boundary points provides a Dirichlet boundary condition. Points for which the values are

not fixed (e.g., missing data) are termed interior points.

7.2.2 Interpolation

Solutions to the Laplace equation with specified boundary conditions are harmonic func-

tions, by definition. Finding a harmonic function that satisfies the boundary conditions

may be viewed as a method for finding values on the interior of the volume that interpolate

between the boundary values in the “smoothest” possible fashion (Courant and Hilbert,

1989b). In this section, we discuss the properties of harmonic functions that make them

useful for interpolation, defining smoothness in terms of extremal solutions to the Dirichlet

integral.

From a physical standpoint, one may think of a heat source with a fixed temperature

at the center of a copper plate and a second heat source with fixed temperature on the

boundary of the copper plate. The temperature values taken by the plate at every point

are those assumed by a harmonic function subject to the internal and external boundaries

imposed by the heat sources. In this analogy, the temperatures measured on the inside

of the copper plate may be viewed as smoothly interpolated between the temperature on

the internal heat source and the external heat source. The internal and external heat

sources are considered to be boundary points, while points on the copper plate for which

temperature values are found are interior points.

Three characteristics of harmonic functions are attractive qualities for generating a

“smooth” interpolation.

1. The mean value theorem states that the value at each point in the interior (i.e., not

a boundary point) is the average value of its neighbors (Ahlfors, 1966).

2. The maximum principle follows from the mean value theorem. It states that harmonic

functions may not take values on interior points that are greater (or less) than the

values taken on the boundary (Ahlfors, 1966).
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3. The Dirichlet integral is minimized by harmonic functions (Courant, 1950). This

means that the integral of the gradient magnitudes for the system will be minimized,

subject to fixed boundary conditions.

7.2.3 Combinatorial formulation: Differential operators on graphs

Using the combinatorial formulations of continuum operators developed in Chapter 2, we

can determine how to solve for the harmonic function that interpolates values on free

(“interior”) nodes between values on fixed (“boundary”) nodes.

A combinatorial formulation of the Dirichlet integral (7.1) is

D[u] =
1

2
(Au)T C(Au) =

1

2
uT Lu (7.3)

and a combinatorial harmonic is a function u that minimizes (7.3). Since L is positive

semi-definite, the only critical points of D[u] will be minima.

If we want to fix the values of boundary nodes and compute the interpolated values

across interior nodes, we may assume without loss of generality that the nodes in L and u

are ordered such that boundary nodes are first and interior nodes are second. Therefore,

we may decompose (7.3) into

D[ui] =
1

2

[

uT
b uT

i

]





Lb R

RT Li









ub

ui



 = uT
b Lbub + 2uT

i RT ub + uT
i Liui. (7.4)

where ub and ui correspond to the potentials of the boundary and interior nodes respec-

tively. Differentiating D[ui] with respect to ui and finding the critical point, yields

Liui = −RT ub, (7.5)

which is a system of linear equations with |ui| unknowns. If the graph is connected, or

if every connected component contains a boundary node, then (7.5) will be nonsingular

(Biggs, 1974). Although various methods exist for solving a system of linear equations

(Golub and Van Loan, 1996; Hackbusch, 1994), the conjugate gradient method is arguably
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the best in terms of speed and parallelization (Dongarra et al., 1991). Conjugate gradients

requires one sparse matrix multiply per iteration, which is bounded above by dmaxs, where

dmax is the maximum degree of an interior node and s is the cardinality of the set of interior

nodes. Assuming a constant number of iterations are required for convergence and that

the maximum degree is independent of the number of nodes (e.g., a 4-connected lattice),

the time complexity of the algorithm is O(s).

Combinatorial harmonic functions arise in a wide variety of applications, playing a

central role in systems of springs (Strang, 1986), the stress and strain of connected beams

(Strang, 1986), Markov chains (Doyle and Snell, 1984) and electrical circuits (Doyle and

Snell, 1984). As an example, we will examine the application domain of electrical circuits.

The other contexts are essentially identical, differing mainly in language and physical

meaning of the respective equations (see Strang (1986) for a full discussion). The electrical

metaphor, however, is of greater interest in the present context since there is some chance

that a VLSI implementation of these methods is possible in terms of the equivalent circuits

presented here.

Using the formulation of the fundamental equations of circuit theory (2.3) developed

in Chapter 2, we may write the power, P , associated with a circuit as

P =
1

2
yT C−1y =

1

2
xT Lx. (7.6)

A comparison of (7.3) and (7.6) demonstrates that the set of electric potentials at the

nodes of a circuit is a discrete harmonic function, i.e., those nodes with a fixed potential

due to voltage sources or grounding are the boundary nodes, the nodes without a fixed

potential are the interior nodes. Furthermore, the interior nodes assume potentials that

minimize (7.3) (see Doyle and Snell (1984) for extensive discussion of electrical networks,

random walks and the Dirichlet integral). If one were to build a circuit with the same

topology as a graph, with appropriate voltage sources to encode the boundary values and

resistors to encode the weights, the physical solution (i.e., a minimum energy solution) to

the interpolation problem would be exactly equal to the nodal potentials of every interior
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Figure 7·1: Interpolating on a graph with a harmonic is equivalent to set-
ting voltage sources (and grounds) at some nodes and reading off the po-
tentials at nodes which are not fixed. (a) A graph with known values on
some nodes and unknown values (indicated with a ‘?’) on other nodes. (b)
The equivalent circuit that would produce potentials on the nodes equal to
those found by the interpolation method.

node. Figure 7·1 illustrates the circuit corresponding to a graph interpolation problem.

7.3 Results

In this section we demonstrate the interpolation algorithm in the context of image process-

ing.

7.3.1 Space-variant (foveal) images

In order to demonstrate the use of the interpolation algorithm on an arbitrary graph, we

imported the Lena image to a graph patterned after the space-variant sampling of the

macaque foveal visual system (Schwartz, 1977; Wallace et al., 1994).

Here, we have removed image data in a circular region and performed the interpolation

obtained via (7.5) to fill in the lost values. No weighting was used to compensate for the

changing length (if embedded in a Euclidean plane) of the edges. In other words, the

interpolation was isotropic in the sense that every edge had unit length (corresponding to

unit resistors in the circuit analogy). The results are displayed in Figure 7·2. One can see

that the region of the graph for which image values were removed take values that smoothly
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interpolate between the dark and light regions. However, since no image information

is encoded into the structure (i.e., uniform weights), the interpolation algorithm simply

fills in the region with a smooth solution. In the next section, it will be shown that

encoding image information in the weights and performing an anisotropic interpolation

provides a solution that resembles the missing (original) values more than the isotropically

interpolated solution.

7.3.2 Anisotropic interpolation

Anisotropic interpolation may be thought of as weighted interpolation or as finding the

potentials in a resistive network in which the resistor values are nonuniform. It is possible

to return to the missing data situation of Figure 7·2 and perform anisotropic interpolation

using weights derived from the image values (acquired before the data was removed). We

employed a Gaussian weighting function of (2.13).

Weighting the space-variant mesh in accordance with (2.13) allows for a more accurate

reconstruction of the missing data values, as seen in Figure 7·3.

Building a weighted (i.e., anisotropic) graph for an image using (2.13) allows for a

smoothed reconstruction of the original image via anisotropic interpolation from the sam-

pling of a small number of points. These reconstructed images resemble those produced by

anisotropic diffusion methods. This is because the solution to the Laplace equation is the

steady state of the diffusion equation with specified boundary conditions (Doyle and Snell,

1984). The primary difference between diffusion-based methods of image enhancement

and those presented here is that diffusion methods approach zero (or constant) when run

for infinite time, since Dirichlet boundary conditions are usually not specified in diffusion

approaches to image processing. Because of this, diffusion methods (both isotropic and

anisotropic) require a stopping condition, while the present method solves directly for a

time-independent solution.

This relationship may be seen even more clearly by comparing the equivalent circuit for

our interpolation algorithm and the equivalent circuit presented for anisotropic diffusion
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(a) (b)

(c) (d)

Figure 7·2: Interpolation of image data on a foveal mesh from which a
hole has been cut out. (a) Underlying foveal graph structure. (b) The Lena
image imported onto the foveal structure. (c) Foveal image with a hole
arbitrarily cut out of it. Underlying graph structure is shown inside the
hole. (d) Foveal image with interpolated data in the hole.
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Figure 7·3: Anisotropic interpolation of image data on a foveal mesh with
the same hole as in Figure 7·2 has been cut out. Weights were determined
using β1 = 95 (see text for details)

by Perona and Malik (1990). If one replaced the voltage source at every node in our circuit

with an appropriately charged capacitor, then the Perona-Malik equivalent circuit would be

obtained exactly. Insofar as similar results are produced for image enhancement tasks with

(steady state) anisotropic diffusion and the present method, two advantages of anisotropic

interpolation present themselves over diffusion. The first of these is that the solution to

the Laplace equation is a steady state solution, while the solution to the diffusion equation

depends on time. Therefore, we have no need to iterate and, thus, we circumvent the need

to choose a stopping point for the diffusion. Secondly, we can smooth less or smooth more

in different areas of the image by decreasing the sampling density in areas where we desire

more smoothing and increasing it in areas where we desire less smoothing.

Figure 7·4 demonstrates results that are visually comparable to anisotropic diffusion

applied to the same image. To generate Figure 7·4, a 4-connected lattice was generated with

weights obtained from (2.13) based on the Lena image. Samples were chosen from relatively

uniform areas by computing the square root of the sum of the edge gradients incident on

each node. All nodes with a value below a threshold were selected as sample nodes to

have their values fixed. The remaining nodes were anisotropically interpolated, given the

fixed set. One can see that sharp boundaries are maintained, due to the encoding of image
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information with weights. Areas of the image with high variability (e.g., the feathers) are

smoothed considerably since very few samples were taken, while areas with initially low

variability remain uniform.

Of course, it is possible to interpolate by a variety of sampling strategies. Figure 7·5

illustrates the results of different structured sampling schemes, as well as the flexibility to

smooth more or smooth less in different areas of the image. Using the same weights as in

Figure 7·4, but a different choice of samples, it is possible to keep the center of the image

true to the original while diffusing out the background or vice versa.

7.4 Conclusion

We have posed the question of how to interpolate nodal values on a graph and proposed a

solution based on solving the combinatorial Dirichlet problem. This interpolation method

has desirable properties as a result of the mean value theorem and the maximum prin-

ciple. Furthermore, the method naturally incorporates a metric into the interpolation if

anisotropic interpolation is desired. Finally, a circuit analogy was presented which both

affords additional intuition into the process as well as holding open the possibility for a

VLSI implementation.

Applications of this method to image processing demonstrate its use for filling in missing

values in a space-variant image and in the anisotropic smoothing of Cartesian images.

Further applications include a smoothing operator for multiresolution reconstruction of

graph-based pyramids or three-dimensional interpolation for surfaces. Graphs are general

structures that may arise in three dimensions for the purpose of computer graphics (Taubin,

1995) or in an arbitrary number of dimensions for data clustering (Jain et al., 1999).

Since this interpolation method depends only on the topology of the structure and not

any information about the dimensionality of the space in which it is embedded, one may

interpolate on graph structures existing in arbitrary dimensions possessing an arbitrary

metric.
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(a) (b)

(c) (d)

Figure 7·4: Anisotropic interpolation of an image based on very sparse
sampling. (a) Original Lena image. (b) Magnitude of image gradient. (c)
Samples taken from lowest magnitude points. (d) Anisotropically interpo-
lated image. β1 = 95
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Figure 7·5: Spatially nonuniform sampling allows for more “diffusion” in
some areas over others. This figure demonstrates the effects of two different
spatial sampling regimes on the anisotropic interpolation of the Lena image.
β1 = 95
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Chapter 8

Conclusion

8.1 Conclusion

If computer vision is going to mimic the space-variant sampling of visual space employed

by biological vision systems, then a principled approach to developing algorithms and

data structures must be adopted. In this thesis, we have proposed the use of combinatorial

algorithms to process data on a graph-theoretic structure in order to perform space-variant

computer vision. This approach benefits by allowing the architect of an active vision system

to incorporate the space-variant sampling most appropriate to the purpose of the system.

From the standpoint of image analysis, the analogies to vector calculus of the combinatorial

approach allow the translation of many calculus-based computer vision algorithms to the

space-variant setting. Finally, the precise analogy between circuit theory and combinatorial

operators allows for the possibility of high-speed analog VLSI implementation of the data

structures and algorithms. Beyond space-variant computer vision, further development of

combinatorial processing algorithms may have application to such diverse fields as computer

graphics, parallel processing, neural networks, and numerical linear algebra.

8.1.1 Further directions in biological mimicry

Graph topology plays an essential role in determining both the output of an algorithm and

its computational characteristics (e.g., Chapters 5 and 6). Graphs and biological neuronal

networks are frequently identified with each other, as in the neural network literature. In

this setting, information carried by ganglion cells is treated as representing nodal informa-

tion. As in the image processing setting, the identification of an edge set is much clear.

Typically, the neural network literature employs a feedforward connectivity to deeper lay-
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ers of nodes (Bishop, 1995). However, the combinatorial algorithms proposed here require,

and are highly dependent on the choice of, lateral connections. Therefore, to pursue a more

biological interpretation of the work here, a thorough investigation of lateral connections

in neural systems would have to be investigated.

Hughes (1977) discusses various proposals that account for the sampling of visual space

employed by different biological vision systems. For example, the “horizontal streak” is

found in many species that live in open (i.e., non-occlusive) environments, such as rabbits,

great cats and ungulates. It has been proposed (see Hughes (1977) for a history of this

suggestion) that species living in open environments possess a horizontal streak because

most objects of interest in their visual field will converge to the horizon. Therefore, a

heavy sampling of the region around the horizon confers a selective advantage. However,

it has been difficult to make such an argument precise, quantify the difference between

alternate sampling strategies or to reverse engineer a new sampling strategy for an artificial

system that will be operating in a well-characterized visual environment. The software

given in the Graph Analysis Toolbox for importing images to different visual sampling

structures allows one to begin to approach these issues by offering a way to compare the

performance of image analysis algorithms using different sampling strategies on the same

set of images. This allows both a comparison of existing sampling strategies on image

analysis, as well as allowing the designer of an artificial vision system to try new sampling

strategies and compare their performance on the tasks of interest. Additionally, researchers

in the organization of retinal topography may employ this system to perform hypothesis

testing of different proposals, such as the usefulness of a horizontal streak. The discipline

of spatial statistics (Cliff and Ord, 1981; Diggle, 1983; Upton and Fingleton, 1985) includes

tools for performing hypothesis tests of spatial autocorrelation, given explicitly on graphs.

8.1.2 Further directions in analysis

Mathematical morphology and image algebra (Ritter and Wilson, 1996) explicitly adopt a

set-theoretic, algebraic and topological approach to computer vision. Since combinatorial
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algorithms have a similar focus, the body of theory already developed in the mathematical

morphology literature could probably be exploited to yield further advances in the approach

to space-variant vision outlined in this thesis.

Compression of data on a graph is an interesting area of unexplored territory. The gen-

eralization of spectral analysis to shift-variant graphs Taubin (1995); Taubin et al. (1996)

suggests that compression of signals on a graph-theoretic architecture might follow the

development of traditional, lattice-based, signal compression. However, since compression

techniques rely on a knowledge of the statistics of natural images (Field, 1987; Ruderman

and Bialek, 1994), optimization of a compression technique would have to involve a similar

study on the statistics of images with a given space-variant architecture.

Finally, nodes need not contain pixel information, but may rather represent image

regions, objects or other features (Perona and Freeman, 1998). Since an architecture that

used nodes to represent image regions would have many fewer nodes than a straightforward

identification of nodes with pixels, many of the same justifications for space-variant image

processing (e.g., speed) would apply to such a representation. Therefore, a promising

direction for application of the data structures and algorithms outlined in this thesis would

be to identify characteristic graph-based representations of images that could be coupled

with the analysis presented here to yield fast, quality results.
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Appendix A

Appendices

A.1 Function list

This appendix is a reproduction of the Contents.m file included in the Graph Analysis

Toolbox

Support for space-variant images.

contour2pdf.m Convert a contour map to a probability density

function.

ellipsefit.m Fit an ellipse to a polygon with least-square error.

findfilter.m Compute resampling filters for a point set.

I/O on space-variant graphs.

importimg.m Import a Cartesian (standard) image to a graph.

showmesh.m Visualize 2D data (e.g., an image) on a graph by

interpolating data across the faces of the nodes.

showvoronoi.m Visualize 2D data (e.g., an image) on a graph by

uniformly filling the Voronoi cell of each node with

its value.

voronoicells.m Compute Voronoi information of a graph for

visualization.

Data processing on graphs.

diffusion.m Diffuse data on a graph.
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dirichletboundary.m Solve the combinatorial Dirichlet problem on a

graph (e.g., interpolate missing data).

filtergraph.m Filter data on a graph.

findedges.m Detect edges in data on a graph.

imgsegment.m Segment a Cartesian (standard) image using a

lattice.

imgsegpyr.m Segment a Cartesian (standard) image using a

pyramid.

isosolve.m Perform the calculations required by the

isoperimetric algorithm.

makeweights.m Convert nodal graph data to edge weights.

partitiongraph.m Segment data on an arbitrary graph.

recursivepartition.m Recursively segment data on an arbitrary graph.

Generating new graphs.

addrandedges.m Add random edges to “small worldify” a graph.

latticepyramid.m Generate a connected pyramid from a Cartesian

lattice.

knn.m Connect nodes to their nearest neighbors.

lattice.m Generate a Cartesian lattice with varying

connectivity.

logz.m Generate a point set using the w = log(z + a)

function describing the macaque retinotopic map.

roach.m Generate the “roach” graph of Guattery and Miller.

triangulatepoints.m Compute an triangulated edge set for an input

node set.

Graph matrix generation.
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adjacency.m Generate the adjacency matrix for a node/edge set.

incidence.m Generate the incidence matrix for a node/edge set.

laplacian.m Generate the Laplacian matrix for a node/edge set.

Support functions.

adjtoedges.m Convert an adjacency matrix to an edge list.

binarysearch.m Perform a binary search of a vector.

circulant.m Generate a circulant matrix (similar to Toeplitz.m).

colorseg2bwseg.m Convert a segmentation indicated with color to a

publishable (B&W) format.

colorseg2bwsegSV.m Convert a space-variant segmentation indicated with

color to a publishable (B&W) format.

equalize.m Perform histogram equalization of a data vector.

normalize.m Normalize data (columnwise) to a specified range.

removeisolated.m Remove any isolated nodes in a graph.

rgbimg2vals.m Vectorize an RGB image.

segoutput.m Convert a segmentation labeling of a lattice to a

better visualization.

segoutputSV.m Convert a segmentation labeling of an arbitrary

graph to a better visualization.

A.2 Demo scripts

This section provides a list of demo scripts included in the extended package. The in-

formation presented here is also included in the Contents.m file included in the DEMOS

directory of the Graph Analysis Toolbox.

Edge finding.

findEdgesDemo.m Compute edges for a Cartesian image using the
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gradient and Laplacian edge detectors.

findEdgesDemoSV.m Compute edges for a space-variant image using the

gradient and Laplacian edge detectors.

Graph filtering.

diffusionDemo.m Compute iso/anisotropic diffusion on a Cartesian

image.

filterCoordDemo.m Filter coordinate data.

filterImageDemo.m Filter a space-variant image.

interpolationFilterDemo.m Use anisotropic interpolation as an image filter.

Graph drawing.

drawGraphDemo.m Use isotropic interpolation to smooth a graph

drawing.

Image interpolation.

fovealAnisotropicDemo.m Perform anisotropic interpolation on a missing

image region.

fovealIsotropicDemo.m Perform isotropic interpolation on a missing

image region.

cartesianAnisotropicDemo.m Perform anisotropic interpolation based on

sampling different regions of the image.

Importing/Visualization.

buildFiltersDemo.m Generate importing filters for a random point set.

contour2graphDemo.m Generate a graph from a retinal topography

contour image.

differentFoveationDemo.m Foveate on different points in a larger image.
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ellipseDisplayDemo.m Fit ellipses to Voronoi cells of a randomly generated

point set.

generateSVgraphsDemo.m Generate graphs and filters from the existing set

of retinal topography images.

importVisualizationDemo.m Import a Cartesian image to an imgGraph and

visualize.

Segmentation.

clusterPointsDemo.m Cluster a point set (segmentation on coordinates).

segmentationSVDemo.m Segment an imgGraph.

segmentationCompareDemo.m Compare segmentation of a Cartesian image

generated by different algorithms.

Pyramids.

pyramidSegmentationDemo.m Compute a segmentation using a pyramid

architecture.

Graph generation.

connectGraphDemo.m Computes and compares graphs with different topology

and geometric arrangement.

A.3 Standardized variable names

Throughout the functions, documentation and demos, a set of standardized variable names

are used. The list of variable names and their meanings is given below, and a reproduction

of this list is included in the file variableNames.txt.

Scalars.

Q Cardinality of faces set in a graph.
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K Dummy constant.

N Cardinality of node set in a graph.

M Cardinality of edge set in a graph.

P Number of coordinate dimensions of a node set.

scale The weighting function parameter.

stop The recursion stop parameter.

X/Y/Z Dimensions of an image or region (e.g., [X Y Z]=size(img)).

Matrices.

W The N × N adjacency matrix.

D The N × N diagonal matrix of node degrees.

img The current image.

L The N × N Laplacian matrix.

A The M × N edge-node incidence matrix.

Vectors.

d The N × 1 vector of node degrees.

vals The N × K vector of K−dimensional nodal values

(e.g., RGB, with K = 3).

weights The M × 1 vector of edge weights.

Graph components.

points An N × P list of node coordinates.

edges An M × 2 list of edges (containing indices to the node set).

faces A Q × K list of polygonal faces with order ≤ K.

Structs.

imgGraph Struct containing the filters for importing an image to a
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space-variant graph.

imgGraph.pntMap A K × 2 list of the K points in the image plane used to

filter an image for importing.

imgGraph.breakpoints A 1 × N list of the breakpoints in imgGraph.pntMap

referring to the points corresponding to different nodes.

imgGraph.filtWeights A K × 2 list of the filter weights for each of the K points

in imgGraph.pntMap.

voronoiStruct Struct containing the information necessary to perform

Voronoi visualization on a

space-variant image.

voronoiStruct.pts K × 2 list of coordinates for the vertices of the Voronoi

cells for the node set, where K > N .

voronoiStruct.index List of nodes that are represented in the visualization

(i.e., nodes with a Voronoi cell within the convex hull of

the node set).

voronoiStruct.faces List of faces representing the Voronoi cells, to be used by

patch.m.

A.4 Included retinal topographies

This section shows the probability density function (PDF) obtained from the retinal to-

pographies of ganglion cell density for the species included in the Graph Analysis Toolbox.

Darker areas represent higher ganglion cell density, while lighter areas represent a lower

ganglion cell density. In addition to having different visual sampling arrangements, differ-

ent species have varying degrees of nonuniformity in the sense that the discrepancy between

the most dense and most sparse regions of ganglion cells may be 2 : 1 in some species and

100 : 1 in others. Since each image given below is normalized to have unity sum, the species
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(a) Baboon (Whit-
teridge, 1965)

(b) Beagle (Peichl,
1992)

(c) Cat (Hughes,
1975)

(d) Cheetah
(Hughes, 1977)

(e) Cow (Hughes,
1977)

(f) Deep-sea bass
(Collin and Par-
tridge, 1996)

(g) Deer (Hughes,
1977)

(h) Bottlenosed
dolphin (Mass and
Supin, 1995)

(i) German shep-
herd (Peichl, 1992)

(j) Harlequin tusk
fish (Collin and
Pettigrew, 1988)

(k) Plains kangaroo
(Hughes, 1974)

(l) Tree kangaroo
(Hughes, 1974)
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(m) Sacred kingfisher (Mo-
roney and Pettigrew, 1987)

(n) Labrador (Hughes,
1977)

(o) Pig (Hughes, 1977)

(p) Pigeon (Whitteridge,
1965)

(q) Rabbit (Hughes, 1971) (r) Two-toed sloth (Costa
et al., 1989)

(s) Squirrel (Hughes, 1977) (t) Wolf (Peichl, 1992) (u) Yellow-finned trevally
(Collin, 1999)
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with a greater ratio of dense to sparse areas are displayed as nearly white with a small dark

region, while species having a lower ratio of dense to sparse regions are displayed as a more

uniform gray. However, since the topographic maps for different species were studied by

different researchers who stopped counting cell densities at different points in the retinal

periphery, the topographies (and hence the images here) may or may not represent an ac-

tual comparison between species as regards the discrepancy between the region of highest

cell density and the region of lowest cell density.
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