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Faster graph-theoretic image processing via
small-world and quadtree topologies

Leo Grady and Eric L. Schwartz

Abstract— Numerical methods associated with graph-theoretic
image processing algorithms often reduce to the solution of a
large linear system. We show here that choosing a topology that
yields a small graph diameter can greatly speed up the numerical
solution. As a proof of concept, we examine two image graphs that
preserve local connectivity of the nodes (pixels) while drastically
reducing the graph diameter. The first is based on a “small-
world” modification of a standard 4-connected lattice. The second
is based on a quadtree graph. Using a recently described graph-
theoretic image processing algorithm we show that large speed-
up is achieved with a minimal perturbation of the solution when
these graph topologies are utilized. We suggest that a variety of
similar algorithms may also benefit from this approach.

I. INTRODUCTION

TRADITIONAL solution methods to partial differential
equations (e.g., finite differences, finite elements) often

culminate in the solution of a large, sparse, symmetric system
of linear equations where the sparsity pattern of the matrix
corresponds directly to the topology of the sampling grid.
Standard discretizations of 2D physical systems (e.g., heat
flow, electrostatic fields), usually choose a topology based
on a four- or eight-connected grid [1]. Graph-based image
processing algorithms [2], [3], [4] typically take the pixels
as the node set and connect the nodes locally with a four-
or eight-connected edge set. Matrices associated with these
graphs (e.g., the Laplacian, adjacency, or incidence matrix)
possess a sparsity pattern defined by the graph topology [5],
[6], as illustrated in Figure 1. Although a lattice is locally
connected and shift-invariant (aside from the borders), there
is no fundamental reason why an image should be restricted
to this connectivity. We show here that alternate methods
of choosing an image topology may significantly increase
the speed and performance of graph-based algorithms that
employ the conjugate gradients method to solve a set of linear
equations. Although some algorithms explicitly require the
solution to a sparse system of equations [7], it was pointed
out in [8] that parabolic PDEs (e.g., the anisotropic diffusion
of [9]) may be more efficiently placed in this form by using
the backward Euler approximation to the time derivative rather
than the forward Euler approximation.
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Fig. 1. (a,b) Example graphs. (c,d) Sparsity pattern of corresponding
adjacency matrices.

A graph is a pair G = (V,E) with vertices v ∈ V and
edges e ∈ E ⊆ V × V . An edge, e, spanning two vertices, vi

and vj , is denoted by eij . Let n = |V | and m = |E| where | · |
denotes cardinality. A weighted graph has a value (typically
nonnegative and real) assigned to each edge called a weight.
The weight of edge eij , is denoted by w(eij) or wij .

Conjugate gradients is generally the algorithm of choice
for solving a large, sparse, system of linear equations [10].
When applied to a matrix generated as a result of graph
topology (e.g., Laplacian matrix, adjacency matrix), it has been
shown [11], [12] that the rate of convergence for the conjugate
gradients method is a function of the graph diameter. The
diameter of a graph, G, is defined formally as

diameter(G) = max( min
vi,vj∈V

(g(vi, vj))), (1)

where g(vi, vj) denotes the number of nodes traversed in
the shortest path between two nodes (i.e., the length of the
minimal geodesic between nodes vi and vj) [13]. In other
words, the graph diameter is the maximum number of nodes
traversed along an optimal path connecting two arbitrary
nodes.



2

(a) Diameter = 150 (b) Diameter = 41

(c) Diameter = 46 (d) Diameter = 22

Fig. 2. (a) 75× 75 Lattice substrate. (b) Delaunay triangulation substrate. (c) Small world graph built on a lattice substrate by adding 50 random edges. (d)
Small world graph built on a Delaunay triangulation substrate by adding 50 random edges.

Here, we present two “small diameter” image topologies
with desirable properties for graph-based image analysis algo-
rithms:

• Small world [14]: A small number of edges (e.g., about
1% of the original number of edges) are added to E, with
the nodes to be connected chosen at random.

• Multi-resolution quad-tree: A multi-resolution quad-tree
is used to represent the image with explicit connections
within (lattice) and across pyramid layers. Effectively,
this introduces short paths via short-circuits through the
higher levels of the quad-tree.

We demonstrate that both approaches significantly reduce the
graph diameter and, as expected, improve the convergence
rate of graph-based image processing algorithms requiring a
solution by conjugate gradients.

A recently developed image segmentation algorithm, the
isoperimetric algorithm [7], [15], is used to demonstrate
the effects of the proposed topologies on the convergence of
conjugate gradients and on segmentation quality. The main
computational requirement of this algorithm is the solution to

the system of linear equations given by

Lx = d, (2)

where L is the weighted Laplacian matrix [16] defined by

Lvivj
=











di if i = j,

−w(eij) if eij ∈ E,

0 otherwise,
(3)

and d denotes the vector of (weighted) node degree. Specifi-
cally, di denotes the weighted degree of vertex vi

di =
∑

eij

w(eij) ∀ eij ∈ E. (4)

II. CONVERGENCE OF THE CONJUGATE GRADIENT
METHOD

When using a graph-theoretic data structure, each iteration
of conjugate gradients [10] propagates information along paths
that are longer by one additional edge. For example, if x0

represents an impulse function (i.e., x0 = [1, 0, . . . , 0]T , a
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Fig. 3. Iterations required to converge on a solution for the isoperimetric
algorithm with conjugate gradients as the number of random edges added
increases for a 128 × 128 4-connected lattice, weighted to reflect the blood
cells image of Figure 4. The dashed line represents the number of iterations
required for convergence with the unaltered 4-connected topology.

nonzero value only at node v0), then that impulse will have
spread only k edges after k iterations. This analogy allows
for the interpretation of the conjugate gradients method as a
mixing process [11], [12].

This analogy can be made explicit by considering the
solution to a diffusion process over a graph (e.g., discrete
lattice) with discrete time steps. For the graph Laplacian matrix
[16], L, and current state, xi, the discrete diffusion equation
may be written

xi+1 = xi + ∆tLxi. (5)

Each iteration, xi, is the sum of a polynomial in L multiplied
by the vector representing the initial state x0.

This analogy between the conjugate gradients method and
mixing processes suggests that the rate of convergence of
the conjugate gradients method will be a function of graph
diameter [11]. In other words, since each iteration of the
conjugate gradients method only spreads information along
one additional edge with each iteration, the algorithm cannot
converge, in general, until the information has spread to
all nodes in the graph. Therefore, the minimum number of
iterations is the length of the longest optimal path between
any two nodes (i.e., the graph diameter).

We demonstrate two proposals for choosing a graph topol-
ogy that increases the convergence rate of the conjugate
gradient method. The first is to choose a locally connected
topology (e.g., 4-lattice) and add in a small number of
random edges. The second is to construct a conventional
quad-tree over the image graph, allowing explicit connec-
tions between levels of the tree. We have constructed an
image graph MATLAB toolbox, which is publicly available
(the Graph Analysis Toolbox (http://eslab.bu.edu:
/software/graphanalysis)). All figures in this paper
are represented with the scripts (and corresponding public
domain source images) that created them at this location.

To demonstrate the (heuristic) validity of the “small-world”
approach, we consider the following questions for the cases
of random, and regular (quad-tree) small-world topologies.

(a)

(b)

(c)

Fig. 4. (a) Original (input) image. (b) Segmentation obtained with unaltered
4-connected topology (β = 95, stop= 10

−5). (c) Segmentation obtained
with the addition of 200 random edges (β = 95, stop= 10

−5). Preceding
parameters refer to the weighting function in [7]
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(a) (b) (c)

Fig. 5. Topology of the connected pyramid graph with 4-connected (a), 8-connected (b), and radius = 5 connected (c) within-level connections.

(a) (b)

Fig. 6. (a) Number of iterations required for convergence of conjugate gradients for equation (2) on a 512 × 512 unweighted lattice as the number of
levels in the pyramid are added. Dashed line represents the number of iterations required to converge for a simple (non-pyramid) lattice. (b) Total number of
multiply operations required to perform conjugate gradients as the number of levels increases. Dashed line represents the number of multiply operations
required for a simple (non-pyramid) lattice.

1) What is the effect of the altered topology on the con-
vergence rate of conjugate gradients?

2) What is the effect of the altered topology on the number
of computations?

3) How does the topology change perturb the solution?

III. SMALL WORLDS

In their landmark paper [14], Watts and Strogatz define what
they term a “small world” topology based on the six degrees
of separation or small world phenomenon found in social
networks. The defining property of a small world network is
that it is locally connected (under suitable definition) while
maintaining a small graph diameter.

Watts and Strogatz demonstrate that a graph with these
properties may be obtained by “interpolating” between a
typical, locally connected graph and the random graphs first
defined by Erdös and Renyi [17], [18]. Most remarkably,
Watts demonstrates [19] that a locally connected graph (the
substrate graph) may be made into a small world graph (i.e.,
given a small diameter) with the addition of a small number
of random edges. Figure 2 shows a lattice (4-connected) graph
and a Delaunay triangulation after addition of a small number
of random edges.

Based on the “small-worlds” intuition, the graph diameter is
dramatically decreased by the addition of these new edges and

the convergence rate of the iterative method should substan-
tially increase. Furthermore, the additional computational cost
due to these edges, per iteration, should be negligible since the
number of new edges is small. Finally, since the number of
long-range edges is “small”, we conjecture that the difference
between the solution to the problem using the “small-world”
formulation and the solution to the original problem, is also
small.

A. Results

The number of multiply operations per iteration in the
conjugate gradients method is equal to the number of nonzero
elements in the matrix. In the case of a 4-connected lattice,
the number of nonzero elements, p, in the Laplacian matrix
is p ≤ 5n. Every random edge added incurs 2 additional
nonzero elements (due to symmetry). Therefore, the amount of
computation required (i.e., number of multiply operations)
per iteration using a small world graph with a few extra edges
is essentially the same as the computation required to process
on the substrate graph.

Since the solution, x, clearly changes with a change in the
underlying graph (i.e., a change in topology), it is useful to
examine the effect of adding random edges on the solution.
For purposes of applying the isoperimetric algorithm [7] to an
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image, the effect of a significant number of edges (as regards
the number of iterations required for convergence) is shown in
Figure 4 to have a minimal effect on the final solution. This
is expected, since adding several hundred edges to an image
of size 128 × 128 (4n2 = 64k) is less than one percent.

IV. QUAD TREE

We first construct a pyramid of progressively coarser images
and link them with the original in a typical quadtree topology.
We term this a connected pyramid (see Figure 5).

In order to perform graph-based image processing, the
connections within layers must also be made explicit. Taking
the within layer topology to be the standard 4/8-connected or
a radially connected topology [2] results in the three layer
connected pyramids in Figure 5.

Although it is possible to define hierarchical arrangements
of arbitrary graphs (e.g., through use of maximal independent
sets [20]), we focus here on the standard Cartesian lattice. For
purposes of simplicity, the values at each (parent) node in the
higher level is taken as the average of the (child) nodes on the
lower level.

The graph diameter in an n × n Cartesian lattice is 2n,
while the addition of each new level causes the graph to
have half the diameter of the previous level, to a minimum
diameter of 2 log2(n) for a full quadtree pyramid. Therefore,
despite the fact that the addition of new levels requires the
solution of (2) for more nodes (to a limit of 4

3
n × n), the

graph diameter decreases dramatically with the addition of new
levels, suggesting that conjugate gradients should converge
faster. In the next section, the effect of decreasing graph
diameter is shown to almost entirely compensate for the
additional nodes in terms of computational efficiency.

A. Speed

In order to determine the mitigating effect of decreased
graph diameter on the solution to (2), we varied the number
of levels used in a 512×512 lattice with uniform weights and
measured the number of iterations required for convergence
of the conjugate gradients method. However, this measure
can be misleading since the number of computations per
iteration increases as the cardinality of the node and edge
sets increases. In order to capture the computational efficiency
of conjugate gradients in solving (2) on a lattice and a
pyramid, the number of multiply operations required to
solve (2) was also calculated. Figure 6 demonstrates that
the number of iterations required for convergence decreases
significantly as new levels are incorporated into the graph,
such that the number of iterations required for convergence
for a full pyramid is slightly greater than half that required for
a lattice. The computational effect of reducing the number of
iterations required for convergence is also displayed in Figure
6, demonstrating that the improved segmentations obtained
from a pyramid architecture incur less than 7% additional
computations. This result represents significant improvement
over the additional computations of 33% expected by a an
algorithm that is linear in the number of nodes.

Image Lattice Pyramid
Blur

Fig. 7. Comparison of segmentations produced by lattice-based and pyramid-
based isoperimetric algorithm in response to increased blur. Left: Image with
increased variance Gaussian kernel (1–7 pixel variance). Middle: Lattice-
based segmentation (β = 95, stop = 1.0 × 10

−5). Right: Pyramid-based
segmentation (β = 180, stop = 2.0 × 10

−5).

B. Segmentation quality

Due to the additional levels in a connected pyramid, more
global information is used by the isoperimetric algorithm in
determining good partitions. This additional global informa-
tion generates improved localization of blurred boundaries,
resulting in higher quality edge detection.

Since the connected pyramid based isoperimetric algorithm
makes better use of blurred edges, we expect that the final
segmentation on natural images will be improved. In Figure
8 the lattice-based and pyramid-based isoperimetric segmen-
tations are compared for several natural images. One can see
that difficult edges are better localized with the pyramid-based
algorithm.

V. CONCLUSION

Our purpose in this paper was to use the connection between
conjugate gradients and a mixing (i.e., diffusion) process to
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(a) ESLab0002 (b) Lattice (c) Pyramid (d) ESLab0004 (e) Lattice (f) Pyramid

(g) ESLab0027 (h) Lattice (i) Pyramid (j) ESLab0031 (k) Lattice (l) Pyramid

Fig. 8. Comparison of images segmented with pyramid (β = 180, stop= 10
−5) and lattice (β = 95, stop= 10

−5) based isoperimetric
algorithms. More examples of the segmentations produced by the pyramid-based algorithm may be found at http://eslab.bu.edu/publications/
grady2004faster/.

motivate the design of image graph topologies when employ-
ing algorithms that require the solution to a system of linear
equations.

Specifically, we have demonstrated that the conversion of a
standard lattice to a “small world” graph through the addition
of a small number of random edges results in large increases in
the convergence rate with minimal effect on the final solution.
We can expect the efficiency of the small world modified graph
to increase as the image size grows, since the diameter of the
unmodified lattice grows linearly with image size, while the
diameter of the modified graph remains roughly constant, for
the sizes of image graphs that we have investigated.

The connected pyramid graph introduces additional nodes
and edges in an attempt to produce higher quality segmentation
results by taking into account the image at multiple resolu-
tions. We have demonstrated that the amount of computation
required to process the graph that has been modified with
significant additions to the node and edge set is reduced from
the expected 4n2/3 for an n × n lattice to a much smaller
amount. In the case of a 512×512 lattice, only 6% additional
computations were required to compute a solution on the
modified graph. We have demonstrated that the payoff for this
slight increase in computation is an enhanced ability for the
isoperimetric segmentation algorithm to detect blurred object
boundaries and an overall increase in segmentation quality.
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