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An image segmentation algorithm delineates (an) object(s) of interest in an image. Its output is referred
to as a segmentation. Developing these algorithms is a manual, iterative process involving repetitive ver-
ification and validation tasks. This process is time-consuming and depends on the availability of experts,
who may be a scarce resource (e.g., medical experts). We propose a framework referred to as Image Seg-
mentation Automated Oracle (ISAO) that uses machine learning to construct an oracle, which can then be
used to automatically verify the correctness of image segmentations, thus saving substantial resources
and making the image segmentation verification and validation task significantly more efficient. The
framework also gives informative feedback to the developer as the segmentation algorithm evolves
and provides a systematic means of testing different parametric configurations of the algorithm. During
the initial learning phase, segmentations from the first few (optimally two) versions of the segmentation
algorithm are manually verified by experts. The similarity of successive segmentations of the same
images is also measured in various ways. This information is then fed to a machine learning algorithm
to construct a classifier that distinguishes between consistent and inconsistent segmentation pairs (as
determined by an expert) based on the values of the similarity measures associated with each segmen-
tation pair. Once the accuracy of the classifier is deemed satisfactory to support a consistency determi-
nation, the classifier is then used to determine whether the segmentations that are produced by
subsequent versions of the algorithm under test, are (in)consistent with already verified segmentations
from previous versions. This information is then used to automatically draw conclusions about the cor-
rectness of the segmentations. We have successfully applied this approach to 3D segmentations of the
cardiac left ventricle obtained from CT scans and have obtained promising results (accuracies of 95%).
Even though more experiments are needed to quantify the effectiveness of the approach in real-world
applications, ISAO shows promise in increasing the quality and testing efficiency of image segmentation
algorithms.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Image segmentation is the act of grouping and localizing 2D or
3D image content and is widely used in the many applications
involving image processing [32]. Identifying groups of pixels as
belonging to the same object can have many practical uses, such
as object measurement or object recognition. Examples range from
using segmentation to help the blind by identifying surrounding
objects and converting this information into coded sound [32], to
Document Image Analysis (DIA), where segmentation is used to
interpret the different components of a document (text, drawings,
maps, formulas, etc.) for document classification or other applica-
ll rights reserved.

nchi), briand@simula.no (L.C.
sce.carleton.ca (Y. Labiche),

.

t al., Automating image segme
9

tions [2]. Although image segmentation algorithms may be used
to localize multiple objects, our focus in this study will be on the
segmentation of a single object of interest within an image. A com-
mon representation of the image segmentation is a labeling of each
pixel in the image as object or background. Image segmentation
algorithms are typically designed to automatically segment an im-
age without the need for an expert to manually delineate the ob-
jects of interest in the image (an example is shown in Fig. 1).

In many areas of medical imaging, automatic image segmenta-
tion of a target object is a critical task to provide measurements of
an object that may be used for diagnosis or treatment planning
[22,25]. Therefore, we adopt medical image segmentation as our
focus area for this study. However, before a segmentation algo-
rithm can be used clinically (or commercially), it is imperative to
know how well the segmentation algorithm performs on a wide
range of real image data, comprising possibly hundreds or thou-
sands of test cases. If a ground truth segmentation is available
ntation verification and validation by learning test oracles, Inform. Softw.
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Fig. 1. Cardiac left ventricle segmentation depicted by the green labeling (we added
an outline of the segmentation to the picture—dashed line—for black and white
printouts).

Fig. 2. Manual image segmentation algorithm evaluation process.
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for each of these test cases (e.g., manual segmentations from a cli-
nician) then it is possible to use these segmentations as a basis to
evaluate the segmentation performance of the automatic algo-
rithm. However, for any clinical task there is typically a range of
segmentations which are considered to be correct (e.g., two clini-
cians often provide slightly different manual segmentations) but,
at the same time, even seemingly small deviations from the ground
truth segmentations can have clinical importance. Consequently, a
visual inspection is often necessary to assess whether differences
between segmentations are medically significant. More often, the
costs of acquiring ground truth segmentations for a large test set
can be too high to be practical, since a well-paid clinician is unli-
kely to spend the enormous amounts of time required to manually
segment each case. Interactions with domain experts indicate that
a more reasonable expectation is that a clinician might be willing
to quickly examine the segmentation results generated by an auto-
matic algorithm and score the quality of the produced segmenta-
tion. The term score here describes the evaluation of quality for a
segmentation, for example Correct or Incorrect.

The usual way of verifying and validating a medical image seg-
mentation algorithm begins by devising and applying a first ver-
sion of the segmentation algorithm (activities A and B in Fig. 2)
to a set of images. From our standpoint, the images constitute
the test suite, and each image is representing a test case. The
results obtained from the segmentation algorithm are then manu-
ally evaluated by medical experts (activity C). If a predetermined1
1 Agreed between the image segmentation algorithm designer and medical experts.
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number of segmentations are correct the algorithm is deemed ade-
quate for clinical or commercial use. After deployment of the soft-
ware into a clinical environment, the image segmentations are
typically reviewed visually by a clinician during use of the software.
Therefore, the primary consideration in determining correctness of
the algorithm is whether the segmentation algorithm will consis-
tently provide benefit to the clinical workflow by saving the clinician
time. The algorithm saves the clinician time if making manual object
measurements is slower than waiting for the algorithm to run and
then possibly editing the results. If a segmentation algorithm is
not ready for deployment, the algorithm must be modified. When
a modification is required, the revised algorithm is re-applied to
the image set and the same evaluation procedure is repeated until
a satisfactory version of the segmentation algorithm is reached
(Fig. 2). Practice shows that the number of iterations can be large,
in many cases requiring dozens of iterations. Indeed, medical experts
are required to visually inspect the correctness of the segmentations
for each iteration and this often results in long waiting times to as-
sess the consequence of any change to the image segmentation algo-
rithm code (or algorithm parameters), delaying the software
development cycle significantly and thus increasing software devel-
opment costs. Manual evaluation of such large numbers of segmen-
tations is also error-prone.

We treat this evaluation problem for image segmentation sys-
tems as an instance of the oracle problem in software testing, which
is the problem of finding a procedure to assess the correctness of
test results (in our case image segmentations) [19]. Our proposed
solution leads to the partial automation of segmentation oracles,
thus making verification and validation more time-efficient and
less reliant on medical experts. We use machine learning to build
a classifier that determines the consistency of segmentation pairs
(segmentations obtained from different versions of the segmenta-
tion algorithm but extracted from the same patient image) and
then use this information to predict the correctness of segmenta-
tions. Two segmentations are considered consistent if they lead
to the same score, otherwise they are considered inconsistent.

To teach the machine learning algorithm to distinguish between
consistent and inconsistent segmentation pairs, the (dis)similarity
between different segmentation pairs are quantified using several
measures and their consistency is determined from expert evalua-
tions of the first few versions of the segmentation algorithm. Ide-
ally (in terms of time spent to find an accurate oracle), as in our
case study, two versions of the algorithm would be sufficient to
find an accurate classifier. We refer to our solution for image seg-
mentation evaluation as Image Segmentation Automated Oracle
(ISAO). Though our case study focuses on a specific segmentation
application, the methodology of ISAO is re-usable in other image
segmentation verification and validation contexts.

An automated oracle for testing image segmentation algorithms
helps designers:

(1) Reduce the long wait times for getting responses back from
clinicians for every version of the segmentation algorithm.

(2) Understand quickly how the changes made in a new version
of the segmentation algorithm have generally impacted the
accuracy of the segmentation algorithm.

(3) Efficiently find the specific test cases, where the new version
of the segmentation algorithm has failed to correctly seg-
ment the image rather than visually inspecting numerous
test cases.

(4) Systematically test the performance of different parameter
configurations of the image segmentation algorithm.

An important side benefit of finding the automated oracle is
that the resulting classifier provides insight into which combina-
tion of segmentation measures leads to a better discriminator of
ntation verification and validation by learning test oracles, Inform. Softw.
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Table 1
Similarity measures.

Measure Type Description

AVD VD Absolute value of volume difference
ANVD VD Absolute value of normalized volume difference
DSC O Dice similarity coefficient
TC O tanimoto coefficient
TPVF O True positive volume fraction
FPVF O False positive volume fraction
ADBD G Average distance to boundary difference
HD G Hausdorff distance
BD G Baddeley distance
PMME G Peli Malah mean error
PMMSE G Peli Malah mean squared error
PFOM G Pratt’s figure of merit
SODI G Scalable ODI (Odet’s ODIn)
SUDI G Scalable UDI (Odet’s UDIn)
ODI G Odet’s ODI
UDI G Odet’s UDI
PAD G Principal axis difference
RMMSD G Root mean square surface distance

2 A pixel in a 3D image is referred to as a voxel.
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the similarity between two segmentations. This insight is signifi-
cant in image processing research since there is no specific way
of knowing which measures allow us to compare two segmenta-
tions in a clinically relevant manner for a particular segmentation
task, or how deviant a segmentation can be from a ground truth
segmentation before it is no longer considered correct. In this re-
gard, Deng et al. [11] conducted a study in which they tried to cor-
relate numerical methods of comparing ground truth with
algorithm segmentation to subjective clinical scoring of a segmen-
tation relative to ground truth. We go further than Deng et al. by
learning to predict score changes from segmentation changes, even
in the absence of ground truth data.

The rest of this paper is organized as follows: Section 2 gives the
reader some background about the adopted image segmentation
comparison measures and a brief description of the machine learn-
ing concepts used in this research work. We detail our test oracle
approach in Section 3. We report its results from the cardiac left
ventricle segmentation verification and validation study in Section
4, where we describe several classifiers and compare their perfor-
mance. A discussion on related work is given in Section 5 and con-
clusions are drawn in Section 6.

2. Background

In this section some background is given on two main subjects
that are essential to building the automated oracle. Section 2.1 will
give the reader some background about the similarity measures
which are used for training the classifiers. Section 2.2 describes
the machine learning algorithms that use the similarity measures
in Section 2.1 to build the classifiers. The techniques used to eval-
uate the performance of the classifiers in order to obtain a valid
classifier for use in the oracle (as explained in Section 3) are also
described in Section 2.2.

2.1. Similarity measures

As explained in Section 1, we rely on several measures to quan-
tify the similarity between segmentations with respect to different
criteria. Apart from a few measures that we have defined ourselves,
the rest of the measures are obtained from the image processing
literature and adapted to our needs. We divide the measures into
three types: volume difference, overlap, and geometrical measures.
An overview of the different categories is given here. For a detailed
description of the measures please refer to [12]. Table 1 summa-
Please cite this article in press as: K. Frounchi et al., Automating image segme
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rizes the measure names, types (VD = Volume Difference, O = Over-
lap, G = Geometrical), and the acronym descriptions.

Volume difference measures calculate either in absolute or rel-
ative terms the difference in the number of voxels2 labeled in the
two segmentations multiplied by the volume associated with each
voxel in the image. These measures are relevant because a common
purpose for medical image segmentation is the measurement of vol-
ume. In the application of our case study, the most important output
of the segmentation system was the left ventricle volume, which is
used for diagnosis purposes.

Overlap measures [9,28] calculate some measure of overlap be-
tween the two segmentations. The intersecting and non-intersect-
ing regions of the two segmentations are identified and different
fractions are defined, each measure placing more emphasis on
the extent of agreement of some regions of interest.

Geometrical measures [1,5,11,15,23,24,27] compare the seg-
mentations in terms of their shape differences capturing variations
such as the distance between the boundary voxels of the two seg-
mentations. These measures may help in finding such cases, where
for example a segmentation has a high percentage of overlap with
the correct segmentation but incorrectly labels some voxels that
make the segmentation incorrect in the view of a medical expert.

The similarity measures in Table 1 are not dependant on the
application domain and only compare segmentations using general
properties of a segmentation, thus they can be potentially used in
any image analysis application.
2.2. Machine learning

The goal of machine learning is to teach a computer system to
learn. A learning system can determine various relationships be-
tween different variables representing a concept (association algo-
rithms), or learning how to divide a piece of data into different
natural groups (clustering). The system may also learn how to as-
sign a class to examples of a domain (classification algorithms).
In this paper we are interested in classification algorithms to learn
whether two segmentations can be classified as consistent or
inconsistent based on the similarity measurements between seg-
mentations. The input of classification algorithms is a set of in-
stances that are each characterized by the values of a number of
attributes and assigned a class (a distinct category). In machine
learning terminology the input is referred to as training instances.
The algorithm constructs a classifier that shows in some format
(for examples rules) what ranges of the attributes and relation-
ships between them lead to each class. The constructed classifier
can predict the class of unknown instances for which we do not
know their class [30]. Better classifiers are constructed when more
training instances with similar proportions of instances from dif-
ferent classes are available. In our case, an instance is a pair of
two segmentations for the same patient but generated by different
segmentation algorithm versions, attributes are similarity mea-
sures, and classes describe whether a medical expert evaluated
the two segmentations to be consistent.

We have used the WEKA-implemented machine learning algo-
rithms J48, JRIP and PART [30] in our case study. The Waikato Envi-
ronment for Knowledge Analysis (WEKA) is a tool widely used by
machine learning researchers. It provides readily available imple-
mentations for popular machine learning algorithms and an envi-
ronment for conducting standard tests to determine how well
the machine learning algorithms perform with respect to different
training and test sets. J48 implements the very well-established
C4.5 algorithm that is a standard algorithm to create decision trees.
C4.5 uses a divide and conquer approach, choosing different
ntation verification and validation by learning test oracles, Inform. Softw.
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attributes in the order of least entropy3 to divide the instances into
different branches, growing the tree recursively and stopping the
growth of a branch when the class of the instances in that branch
can be determined or, in other words, a leaf node has been reached.
PART uses partial decision trees to construct rules from the branches
that lead to a leaf node covering the most instances. This algorithm
attempts to avoid building a full decision tree for each rule by grow-
ing the resultant attribute split subsets with the lower entropies
first, which leads to small sub-trees and more generic rules [30]. JRIP
implements the Repeated Incremental Pruning to Produce Error
Reduction (RIPPER) algorithm [8] that is a rule-induction technique.
For each class, JRIP starts by finding a rule that covers most of the
training instances and has the best success rate (least number of
misclassified instances). This procedure is repeated recursively until
all instances are covered for that class and then repeated for the
other classes. A procedure known as incremental reduced-error prun-
ing refines each rule immediately after construction and a number of
global optimization stages are applied after the construction of all the
rules for further refinement [8]. In the case of decision trees or rule-
based classifiers, pruning removes extra branches or rules, with the
aim to prevent the over-fitting problem, where the classifier is over-
fitted to the training data and cannot perform well when classifying
unknown instances. In reduced-error pruning the training set is split
into a growing set to construct the rules and a pruning set for prun-
ing which means fewer instances are used for training. We select
C4.5 pruning for J48 and PART. Please refer to [30] for further discus-
sion on pruning techniques.

The use of decision branches and rules in these machine learn-
ing algorithms allows technical and medical experts to easily inter-
pret the classifiers and gain more confidence in the decisions made
by the classifier and the overall approach. Although more compli-
cated machine learning algorithms exist, such as SVM and Neural
Networks, they tend to produce outputs that are more difficult to
interpret and are left to future work. Our main focus in this paper
is to demonstrate our solution to the oracle problem in regards to
image segmentation evaluation and, as presented in Section 4.4,
the adopted classifiers perform very well in terms of classification
accuracy.

To improve the performance of our machine learning algo-
rithms, we have taken advantage of attribute selection techniques
such as filters and wrappers. These techniques weed out attributes
that do not add any significant improvement in building a better
classifier. This is done before constructing the classifiers. Correla-
tion-based Feature Selection (CFS) chooses a subset of attributes
from the original attribute set that have a high correlation with
the class and a low correlation with each other. Wrappers select
attributes by first training a classifier from different subsets of
the original attribute set and choosing the subset of attributes that
trains the best performing classifier. Both filters and wrappers re-
quire searching the attribute space. We chose an exhaustive search
method for CFS, where all the possible attribute sets are consid-
ered, and we chose a greedy method for the J48 wrapper as an
exhaustive search proves to be very time consuming in this case
because of the requirement to build a classifier for each attribute
set. In a greedy search method such as forward hill climbing, we
start from an empty subset adding attributes to the set until the
addition of no attribute will result in a performance improvement
at which point the current subset is the selected subset of attri-
butes. The main motivation for choosing a wrapper and CFS filter
instead of using other attribute selection techniques were the
3 Entropy is a term acquired from information theory that in simple terms conveys
the extent of non-uniformity in a group of instances: a group of instances that show
equal proportions across classes have an entropy of 1 (entropy ranges from 0 to 1),
depicting a uniform distribution.

Please cite this article in press as: K. Frounchi et al., Automating image segme
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benchmarking results of different attribute selection methods re-
ported in [14].

ISAO starts using automated test oracles when an accurate clas-
sifier for the purposes of the application has been built. A standard
technique to test classifier performance is stratified 10-fold cross-
validation. This technique splits the training set into 10-folds, each
time training the classifier with 9-folds and testing it with the
remaining fold. A procedure known as stratification randomizes
the instances in each fold such that each one contains a similar
proportion of the different classes. In order to prevent bias, the pro-
cedure is repeated 10 times in our experiments. Metrics such as
accuracy and the area under the Receiver Operating Characteristic
(ROC) curve [30] are used as indicators of performance in cross-
validation. Accuracy refers to the success rate of the classifier (per-
centage of correct predictions). The ROC curve is a plot of the true
positive (i.e. instances that are correctly classified as positive, in
our case consistent) rate versus the false positive rate. The larger
the area under this curve the better the classifier performs, reach-
ing perfect performance when the area is 1.
3. Semi-automated verification and validation approach

In this section we depict our solution towards the oracle prob-
lem in the context of image segmentation evaluation. Fig. 3 shows
an activity diagram depicting the flow of activities in ISAO. Two
series of activities take place concurrently, as illustrated by two
swimlanes: Segmentation evaluations and Learning classifier. The
segmentations are evaluated manually in the segmentation evalu-
ations swimlane (Section 3.1) until enough data is available to
build an accurate classifier in the learning classifier swimlane (Sec-
tion 3.2), thus allowing the automated evaluation of
segmentations.
3.1. Segmentation evaluation swimlane

This swimlane has four activities: activities A–D; and is similar
to the activity diagram of Fig. 2. The first time the Devise/Update
segmentation algorithm activity (activity A) is performed, an initial
version of the image segmentation algorithm is devised. Each time
this activity is repeated, i.e., when the segmentations produced by
the image segmentation algorithm are deemed inadequate, the im-
age segmentation algorithm is revised. Further versions of the im-
age segmentation algorithm are made in subsequent iterations
until a satisfactory set of segmentations are produced.

During the Segment images activity (activity B), the segmenta-
tion algorithm produced in activity A is used to segment a set of
sample images (Test suite) used as a benchmark. This results in a
set of segmentations, each segmentation corresponding to one
sample image. We refer to the segmentations obtained from ver-
sion i of the segmentation algorithm (i.e., during the ith iteration
of this swimlane) as segmentation set seti.

The segmented images are verified either manually or automat-
ically in the next two activities (C and D), depending on whether an
accurate classifier has been learnt. If this is not the case (Section
3.2), the segmentations have to be manually evaluated (activity
C—Manual evaluation). When an accurate classifier is available
(Section 3.2), the evaluation is done automatically: activity D—
Automated evaluation. In activity D, the classifier predicts, based
on the similarity measurements (activity E) between the segmen-
tations produced by the current version i of the segmentation algo-
rithm and the segmentations produced by previous versions (j < i)
of the segmentation algorithm, whether or not a segmentation pair
is consistent.

Table 2 shows how the correctness of segmentation n produced
by version i of the segmentation algorithm (Sn,i) can be obtained
ntation verification and validation by learning test oracles, Inform. Softw.
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Fig. 3. Image Segmentation Automated Oracle (ISAO).

Table 2
Mapping between classifier results and the correctness evaluation of the test image
segmentation.

Evaluation of
Sn,j (j < i)

Predicted consistency of
segmentation pair (Sn,j–Sn,i)

Evaluation of Sn,i

Correct Consistent Correct
Correct Inconsistent Incorrect
Incorrect Consistent Incorrect
Incorrect Inconsistent Requires manual

evaluation
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from the consistency classifications of the learnt classifier. If the
classifier predicts segmentation Sn,i to be consistent (based on sim-
ilarity measures) with a correct segmentation Sn,j (j < i) then seg-
mentation Sn,i is predicted to be correct. If segmentation Sn,i is
predicted to be inconsistent with a correct segmentation or consis-
tent with an incorrect segmentation then it is predicted to be
incorrect. In the case, where segmentation Sn,i is predicted to be
inconsistent with an incorrect segmentation, no conclusion can
be drawn and the correctness of segmentation Sn,i has to be man-
ually evaluated by an expert. Depending on the adopted machine
learning algorithms, the accuracy of each prediction can be deter-
mined by the automated oracle such that the segmentation algo-
rithm designer can manually evaluate the questionable
predictions and understand how much emphasis he should put
on some results compared to others that have been made with
higher accuracies when creating a new version of the segmentation
algorithm.

As the number of iterations increases, more segmentations can
be used to compare new segmentations with and evaluate their
correctness. For example, if a segmentation Sn,i is inconsistent with
the incorrect segmentation Sn,i�1, but consistent with the correct
segmentation Sn,i�2, it would be considered to be correct. In deter-
mining the correctness of a new segmentation in the presence of
several prior segmentations of the same image, different policies
can be adopted. The most straightforward option is to use a simple
Please cite this article in press as: K. Frounchi et al., Automating image segme
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majority vote, where the segmentation is deemed (in)correct if it is
predicted to be consistent with an (in)correct segmentation in the
majority of comparisons. If one believes that the latest version of
the segmentation algorithm is superior to all previous versions,
then more weight could be given to the most recent version of
the segmentation algorithm. The best policy should be empirically
determined.

After either activities C or D, if more than an acceptable percent-
age threshold1 of image segmentations are evaluated to be incor-
rect, we go back to activity A, where the image segmentation
algorithm is revised. Otherwise, the testing process ends and the
current version of the image segmentation algorithm is deemed
to be satisfactory.

3.2. Learning classifier swimlane

This swimlane has three activities: activities E–G. In activity E
(Generating the learning set), pairs of segmentations obtained
from multiple versions of the image segmentation algorithm
(current version i, and version j, j < i) are compared using a set
of similarity measures (Section 2.1). At least the first two sets
of segmentations generated by the first two versions of the
segmentation algorithm are required to get the first set of simi-
larity measurements. In other words, at least two iterations of
the Segmentation evaluations swimlane (with manual evaluation
in activity C) are necessary. More iterations may add to the
accuracy of the classifier at the expense of more expert
intervention.

Pairing segmentations of the same images/patients across two
segmentation sets seti and setj results in three distinct subsets of
paired segmentations. The first set is composed of the pairs of seg-
mented images that were both deemed correct by an expert, de-
noted by setyy (i.e., ‘y’ for ‘‘yes’’ for the two versions). The second
set is composed of the pairs of segmented images, where either
the first or second segmented image was deemed incorrect and
the other deemed correct, denoted by setyn (one is correct: ‘y’,
and one is incorrect: ‘n’). The third set is the set of all the pairs of
ntation verification and validation by learning test oracles, Inform. Softw.
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segmented images that were both considered incorrect, denoted by
setnn.

The machine learning algorithm (activity F) does not use setnn

as the information obtained from comparing two incorrectly seg-
mented images would not help the learning algorithm construct
a classifier to recognize diagnostically equivalent (consistent)
segmentations. Though diagnostically equivalent segmentations
refers to two segmentations that both lead to the same
diagnostic by the medical expert, two segmentations may be
incorrect for two completely different reasons and cannot be
categorized as consistent with each other. Table 3 summarizes
how we categorize a pair of segmentations to be (in)consistent,
where Sn,i and Sn,j are two segmentations obtained from image
n using versions i and j of the segmentation algorithm,
respectively.

Table 3 assumes that the segmentation evaluations are binary,
i.e. either correct or incorrect. This was certainly the case in our
case study. In the event, where segmentations are graded with
more granularity, for example each segmentation is graded from
1 to n, where grade 1 represents the lowest correctness grade
and grade n the highest, a mapping to a binary scale can be defined,
e.g., segmentations with grades 1–[n/2] can be considered incor-
rect while segmentations with grades ([n/2] + 1) to n be considered
to be correct. This obviously leads to a loss of information but it can
only be resolved if a degree of correctness can be decided for every
possible combination of grades for a pair of segmentations. This
means if one of n grades are given to a segmentation, then
C(n, 2) correctness classes can be assigned. For example if we have
four grades (grades 1–4) a class will represent the case, where one
segmentation has grade 1 and the other has grade 3 and another
one represents the case, where both segmentations are graded 4.
A first challenge in doing so is that since we have many more clas-
ses, having enough examples for each class is a concern when
training the classifier. The reliability and subjectivity of the grading
in such a fine scale is also a concern. The assignment of a correct-
ness class also tends not to be as intuitive with multiple grades. A
binary correctness scale is therefore, at this stage of the research,
more practical. More discussion on this subject is left to future
work.

The application of the similarity measures to image pairs in setyy

and setyn generates a set of tuples in the form of (smi1, . . . , smik,
consistency), where smij denotes similarity measure j on image pair
i and ‘‘Consistency’’ can take two values: yy (consistent) or yn
(inconsistent). Index k is the number of similarity measures. This
set of tuples is the training set that is fed into the machine learning
algorithm: activity F (Learn Classifier). The machine learning algo-
rithm learns which combination of measures and which ranges
of their values depict consistent or inconsistent segmentation
pairs. Before using the machine learning algorithms to train the
classifiers, experiments are done to find the optimal set of attri-
butes. This is done through attribute selection techniques de-
scribed in Section 2.2 (practical results are shown in Section
4.4.2). Any machine learning algorithm can be plugged into ISAO.
Experiments are reported in Section 4.4.3 to find the best segmen-
tation algorithm among the three chosen for demonstrating and
assessing ISAO.
Table 3
Consistency of two segmentations.

Manual evaluation of Sn,i Manual evaluation of Sn,j Class

Correct Correct Consistent
Correct Incorrect Inconsistent
Incorrect Correct Inconsistent
Incorrect Incorrect Unusable (not a class)
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The learned classifier (activity F) is validated using techniques
such as 10-fold cross-validation (Section 2.2) in activity G (Evaluate
classifier). A classifier is deemed valid if its accuracy is deemed to be
sufficiently high to be used in practice. This means that, given the
needs and constraints of the application domain, the classifier cor-
rectly classified, using the segmentation measurements, a reason-
able number of segmentation pairs to be consistent or
inconsistent. Once the valid classifier is learnt, the evaluation in
the Segmentation evaluation swimlane can be performed automat-
ically (activity D). To do so, the similarity measures depicted in Ta-
ble 1 are collected for the unevaluated segmentations of the new
version of the segmentation algorithm and the already evaluated
segmentations of a previous version, to obtain tuples of the form
(smi1, . . . , smik), using the same notation as the previous para-
graph. These tuples are then used as inputs to the classifier which
then assigns a ‘‘consistent’’ or ‘‘inconsistent’’ class to each tuple, at
which point Table 2 is used to assess the correctness of each new
segmentation.

In order for the automated evaluation activity (activity D) to
kick in, at least two iterations of the segmentation evaluations
swimlane are necessary. This is to provide the training data neces-
sary to train the classifier. If an accurate classifier is not obtained
after the first two iterations, additional iterations of manual evalu-
ations must be performed to provide more training data until a va-
lid classifier is learnt. With k iterations of manual evaluations and n
test cases, n� Cðk;2Þ training instances are available. Even in the
case, where we do not succeed in learning a classifier with satisfac-
tory average accuracy, we can expect that there will always be
some parts of the classifier predictions with very low error rates
that can be trusted with high confidence. For example, particular
branches in decision trees or rules in rule induction techniques
may exhibit much higher accuracy than other branches or rules.
If the classifier can provide accurate predictions for a practically
significant number of cases, then the classifier is a good candidate
for partially automating the segmentation evaluations.

When testing industry strength image segmentation algo-
rithms, the accuracy of these algorithms is paramount as they
are usually applied for diagnostic purposes (such as our left ventri-
cle segmentation case study). As a result, image benchmarks are
usually large enough to provide enough data to feed the machine
learning algorithm. Consequently, the need for finding an auto-
matic approach to testing such algorithms is acute as a large num-
ber of segmentations have to be verified by medical experts
through many iterations. With ISAO though, medical experts are
still required for the first few iterations and human errors are
therefore possible. An interesting study on the trade-off between
the expense of finding more accurate training data versus the use
of training data that may have some noise shows that if the size
of the training data is substantial, the effect on the performance
of a classifier is minimal [17]. ISAO trains classifiers that determine
consistency between old and new segmentations and then derives
the correctness of each new segmentation based on prior correct-
ness information about the old segmentations. It does not train a
classifier that can assess correctness directly from a segmentation.
Training such classifiers would require measures that can help as-
sess the correctness of a standalone segmentation without using
any medical expert knowledge.
4. Case study

This section describes the application of ISAO to the verifica-
tion and validation of a left ventricle segmentation algorithm.
As defined by IEEE, validation is ‘‘the process of evaluating a sys-
tem or component during or at the end of the development pro-
cess to determine whether it satisfies specified requirements’’.
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Table 4
Study description summary.

Segmentation target Left ventricle of the heart

Number of patients 50
Number of test cases in test suite 181
Number of attributes (measures) 18
Number of positive instances 104
Similarity measure types Overlap, volume difference, geometrical
Machine learning algorithms J48, JRIP, PART
Classifier evaluation technique Stratified 10-fold cross-validation
Performance metrics Accuracy, area under ROC curve
Statistical test t-test (95% confidence level)
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IEEE also defines verification as ‘‘the process of evaluating a sys-
tem or component to determine whether the products of a given
development phase satisfy the conditions imposed at the start of
that phase’’. We present here an automated oracle for the assess-
ment of segmentation algorithms based on a benchmark of
images (validation); the requirement here is the usage of the seg-
mentation algorithm for diagnostic purposes. Our approach also
includes verification since the correctness of the segmentation
algorithm, which is a condition imposed at the start of each revi-
sion, is checked after every revision of the segmentation algo-
rithm. The layout of this section is as follows: The study
objectives and design are explained in Section 4.1. We then de-
scribe the different attribute sets (similarity measures) that we
have used in order to train the best performing segmentation
consistency classifiers and thus oracle (Section 4.2), identify the
best performing classifiers and provide insights on how to inter-
pret them (Section 4.3), and compare the performance obtained
with various attribute sets, machine learning algorithms, and
the filtering methods (Section 4.4).
Table 5
Spearman rank correlations between similarity measures.

TC DSC 1.000
SODI ODI 0.995
4.1. Study objectives and design

In this case study we intend to reach the following objectives:

� Analyze the performance of ISAO on a cardiac left ventricle seg-
mentation algorithm devised by Siemens Corporate Research.
Our goal is to determine if ISAO can lead to practical benefits.
� Investigate which similarity measures have the highest impact

in determining the consistency of two segmentations and
understand the tradeoff between using more expensive mea-
sures (in terms of run-time and complexity) and achieving bet-
ter classifier performance.
� Analyze and compare the performance of several classification

algorithms combined with attribute selection techniques to
determine whether they are appropriate for our application
and produce acceptable results.

The segmentation algorithm we use in this case study identifies
the left ventricle of the heart4 from a Computed Tomography (CT)
Scan. CT-Scan images of the heart of 50 patients have been taken
at different times during the cardiac cycle, resulting in 181 CT-Scans.
Each CT-Scan is a 3D image that comprises a set of 2D images
(slices). All the 2D slices, together, form the 3D image. The segmen-
tation algorithm and similarity measures work on 3D images. Due to
the variety in acquisition protocol and equipment across clinical cen-
ters, each CT-Scan has between 53 and 460 2D images, and each 2D
image depicts either a 256 by 256 or 512 by 512 pixel slice of the
heart. Each CT-Scan, representing a patient’s heart at a given instant,
constitutes a test case in the test suite. The segmentations are ob-
tained using a form of the general segmentation algorithm presented
in [13] that is customized for cardiac segmentation.

Two successive versions of the segmentation algorithm were
used to obtain the segmentations of the 181 CT-Scans, involving
a medical expert for the evaluation of each segmentation. In other
words, activities A–C in Fig. 3 were executed twice. Pairs of seg-
mentations from the same CT-Scan, output from the two segmen-
tation algorithm versions, are compared using the 18 similarity
measures of Table 1 (activity E in Fig. 3). 181 tuples or training in-
stances (Section 3.2) are thus generated combining similarity mea-
sures and the consistency class of each pair: 104 tuples are found
to be consistent (positive instances) while 77 tuples are Inconsis-
tent (negative instances).
4 The volume of the left ventricle can then be computed at different times during
the cardiac cycle for diagnostic purposes.
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As explained in Section 2.2, the J48, JRIP, and PART machine
learning algorithms were chosen to train classifiers (activity F in
Fig. 3). Though activity F does not require the use of several classi-
fication algorithms, in our research work, we are interested in eval-
uating alternative algorithms to determine the best option for our
application. The performance of these algorithms is evaluated
using 10 stratified 10-fold cross validations by measuring their
classification accuracy and the area under the ROC curve (activity
G in Fig. 3). Any significant differences with respect to the choice
of attribute set type (Section 4.4.1), attribute selection technique
(Section 4.4.2) or machine learning algorithm (Section 4.4.3) is
measured using the statistical t-test with a confidence level of
95%. All this information is summarized in Table 4.
4.2. Attribute sets

Recall from Section 2.1 that we consider three types of mea-
sures: volume difference, overlap, and geometrical measures. The
former two types of measures do not consider the shape differ-
ences between the two segmentations, thus being less complex
in terms of computation, and also take less run-time compared
to the geometrical measures. The overlap and volume difference
measures have therefore been combined together, and we will
refer to these measures as simple measures. We are interested in
studying the changes in performance of the learning process when
using only the two least expensive types of measures (i.e., simple
measures), the most expensive type of measures alone (i.e., geo-
metrical measures), or when using all measures. In order to inves-
tigate how the classifier performance would change when built
using a filtered set of attributes we have applied the Correlation-
based Feature Selection (CFS) filter and a J48 based wrapper.
Applying (or not) the two filtering mechanisms to the three group-
ings of measures, we end up considering nine different attribute/
measure sets (Table 6) to train the classifiers.

Some of these measures show high correlation with each other
as shown by Spearman’s rank correlation values in Table 5. Highly
correlated attributes will not add any significant discriminating
power in terms of learning the class of instances and large numbers
of attributes are known to possibly affect the resulting accuracy of
the classifier. Since in this work the number of attributes is small,
we let the machine learning algorithms decide which ones to use
while also taking advantage of effective techniques to select attri-
butes, such as filters and wrappers (Section 2.2).
SUDI UDI 0.992
HD BD 0.961
PMME PMMSE 0.955
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Fig. 4. Best decision tree classifier.

Table 6
Attribute sets.

Attribute set Selection criteria Label

1 TC–DSC–TPVF–FPVF–AVD–
ANVD

Overlap and volume difference
measures

OV

2 TC–DSC–AVD–ANVD Overlap and volume difference
measures chosen by the CFS
filter using exhaustive search

OVC

3 TC–FPVF Overlap and volume difference
measures chosen by the J48
decision tree wrapper using
forward selection greedy search

OVW

4 BD–HD–PFOM–RMSSD–
ADBD–SODI–ODI–SUDI–UDI–
PAD–PMME–PMMSE

Geometrical measures G

5 HD–BD–PFOM–RMSSD–ODI–
UDI–PAD

Geometrical measures chosen
by the CFS filter using
exhaustive search

GC

6 PFOM–SODI–SUDI Geometrical measures chosen
by the J48 decision tree wrapper
using forward selection greedy
search

GW

7 TC–DSC–TPVF–FPVF–AVD–
ANVD–BD–HD–PFOM–
RMSSD–ADBD–SODI–ODI–
SUDI–UDI–PAD–PMME–
PMMSE

All measures A

8 TC–DSC–AVD–ANVD–HD–
RMSSD–ODI–UDI

All measures chosen by the CFS
filter using exhaustive search

AC

9 TC–FPVF–SODI All measures chosen by the J48
decision tree wrapper using
forward selection greedy search

AW
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4.3. Classifiers

Before we delve into the details of the classifiers, let us summa-
rize the configuration parameters of the machine learning algo-
rithms (Table 7). The parameters for J48 and PART are similar as
PART uses partial decision trees in its construction process. The
number of instances per leaf node parameter restricts the mini-
mum number of instances in a leaf node to four. Higher values
for this parameter take away the freedom of C4.5 to form leaf
nodes but very low values also may cause over-fitting to the data.
Initial experiments were conducted with WEKA in order to fine
tune these parameters. For J48/PART, the number of instances
per leaf node parameter was swept from 2 to 10, each time training
with one of the attribute sets in Table 6 The chosen value (4) was
either significantly better or equivalent to the other values of this
parameter in the majority of cases. Statistical significance was
determined using the t-test (with a significance level of 0.05) when
comparing the accuracies obtained from performing 10 times a
stratified 10-fold cross-validation using each value of this parame-
ter. Similarly, the number of folds for pruning and the number of
global optimizations parameters were optimized by sweeping each
parameter from 2 to 10. C4.5 pruning also proves to be either sig-
nificantly better or equivalent to reduced error pruning, which is
the motivation behind its selection for J48/PART.

Fig. 4 shows the best performing decision tree trained with the
wrapper selected attributes (attribute set AW in Table 6) and pro-
duced by J48. Based on performing 10 times a 10-fold cross valida-
Table 7
Classifier configuration parameters.

Parameter Value Algorithm

Number of instances per leaf node 4 J48/PART
Pruning method C4.5 J48/PART
Number of folds for pruning 3 JRIP
Number of global optimizations 4 JRIP
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tion, this classifier’s accuracy is 94.92% and its ROC area is 0.95. The
numbers shown in the parentheses in Fig. 4 (from left to right) rep-
resent the number of training instances that reach each leaf node
and the number of these instances that are incorrectly classified
by that leaf node, respectively.

Reading the decision tree shows that if the overlap (using mea-
sure TC) between the two segmentations is less than approxi-
mately 75% then the segmentations are categorized as
inconsistent (as confirmed by 59 of the 74 inconsistent pairs in
the training set) with only 1 misclassified instance, otherwise a
distance of less than 0.13 determined by the geometrical measure
SODI will lead to a consistent pair (confirmed by 98 of the 107 con-
sistent pairs) with only 3 misclassifications. The overlap measure
FPVP helps classify the remaining pairs of segmentations when
the TC overlap is greater than 75% and the SODI distance is greater
than 0.13. If the FPVP overlap between the two segmentations is
less than 0.28% then we have a consistent pair again, otherwise
the segmentations are inconsistent. The branch predictions of con-
sistent pairs can be considered quite accurate with a minimum er-
ror rate of 3% (TC–SODI-consistent branch) and a maximum error
rate of 22% (TC–SODI–FPVF-consistent branch), which only applies
to a small number of the training instances (two errors out of only
9 instances). In practice, the maximum acceptable error rate
should be determined for each application, a threshold above
which the manual verification of a segmentation should be re-
quired. Assuming a maximum error rate threshold of say 5% is
acceptable, then we see that most classifications would be accept-
able (157 out of 181).

Trained with the same attribute set (set AW), PART constructs
four rules:

Rule 1: if ((TC > 0.7525) && (SODI 6 0.129552)) then
class = consistent (98/3).
Rule 2: else if (TC 6 0.76311) then class = inconsistent (59/1).
Rule 3: else if (FPVF > 0.002778) then class = inconsistent (15/
1).
Rule 4: else class = consistent (9/2).

Interpreting each of the branches in the decision tree of Fig. 4 as
a rule, we see that the PART rules are essentially the same as the
J48 classifier in Fig. 4 with a small difference in the threshold used
for TC for identifying inconsistent pairs (0.76311 in the second rule
versus 0.7525 in the decision tree). This stems from the fact that
PART constructs a different decision tree to generate the second
rule, which means that it may not necessarily come up with the
same threshold as the first rule when trying to cover the remaining
instances that are not covered by rule 1.

On the same attribute set (set AW), JRIP generates three rules:

Rule 1: if (TC 6 0.737932) then class = inconsistent (58/1).
Rule 2: else if ((SODI P 0.131275) && (FPVF P 0.002838)) then
class = inconsistent (16/1).
Rule 3: else class = consistent (107/5).
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JRIP covers all the instances that belong to one class before pro-
ceeding to the next class, whereas PART uses partial decision trees
for rule induction and depending on the chosen leaf at each stage,
instances belonging to a different class may be covered. Again, the
rules produced by JRIP are very similar to the ones produced by J48
and PART, with small differences in thresholds used for TC, SODI
and FPVP.

We see from all three classifiers that TC is the best discriminator
for negative instances (inconsistent pairs) while the combination
of TC and SODI is the best discriminator for positive instances (con-
sistent pairs).

Unfortunately, there is no existing oracle for this problem to
which we could compare the learned classifiers—this is the oracle
problem and it is precisely why we try to learn the expert’s
opinion.
Fig. 6. Average area under the ROC curve for all classifiers.
4.4. Classifier performance comparisons

In this section we investigate the performance of the classifiers
with respect to the attribute set (Section 4.4.1), the application of
filters/wrappers (Section 4.4.2) and the machine learning algo-
rithm (Section 4.4.3). We refer to Figs. 5 and 6 throughout the dis-
cussion. Each point in these figures is the average across ten 10-
fold cross validations. We use the t-test to find any significant dif-
ferences in the results. The paired t-test is a standard statistical test
used to evaluate whether the null hypothesis specifying that two
random samples have the same mean can be rejected or not (with
a specified degree of confidence). If rejected, this would indicate
that the means are significantly different. The t-test assumes that
the mean follows a normal distribution regardless of the distribu-
tion of the samples themselves, which is a valid assumption if we
have large enough samples. In our case, the t-test has been per-
formed on the mean of the accuracies that have been obtained
after performing 10 times stratified 10-fold cross validation creat-
ing a sample size of 100 (a reasonable sample size). We have used a
confidence level of 95% to report our results.
4.4.1. Effect of attribute set type
In this section, we compare the performance of the classifiers

trained with the geometrical measures to the performance of the
classifiers trained with the simple measures (overlap and volume
difference) and then investigate how using all the measures will af-
fect the classifier performance using the accuracy and ROC area
metrics.

As Figs. 5 and 6 show, the geometrical measures (set G) do not
show any noticeable performance improvement compared to just
using the simple measures (set OV). This is also confirmed with a
t-test showing there is no significant performance difference be-
Fig. 5. Average accuracy for all Classifiers.
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tween these two sets. This result indicates that using solely geo-
metrical measures may not be required in this case study and
thus may not be required in activity F of Fig. 3 to learn a classifier.
Considering that the geometrical measures result in no perfor-
mance improvement and also are more complex to implement
and test, this increases the applicability of our approach. However,
combining the geometrical and simple measures (set A) seems to
be very promising. We see in Table 8 significant accuracy improve-
ments (statistically significant with a confidence level of 95%) for
all three classifiers compared to just using either of the simple
(from 4.82% to 6.47%) or geometrical measures (from 4.91% to
7.35%). A similar trend is visible for the ROC areas (Fig. 6). This
shows that the classifiers achieve very high discriminating power
when taking advantage of both the simple and geometrical
measures.
4.4.2. Effects of wrappers and filters
The effect of filtering and using wrappers is investigated in this

section. Table 9a–c shows respectively the classifier accuracies
achieved when trained by the simple, geometrical and all measures
sets before and after applying the CFS filter and J48 wrapper. In
Table 9, ‘‘Not Sig.’’ means that there is no significant difference
(as indicated by performing the t-test with 0.05 significance level)
between the two trained classifiers to be reported; all the reported
numbers indicate statistically significant differences. We see that
using the training instances with only the attributes selected by
the wrapper always achieves a significant improvement in the
accuracy of the trained classifier compared to using all the attri-
butes: the maximum accuracy improvement is 7.66% for the J48
classifier when using the geometrical measures. Similar trends
were observed with the ROC area. On the contrary the CFS filter
in some cases significantly degrades the classifier’s accuracy. Using
a PART wrapper or a JRIP wrapper also improves classifier accuracy,
but the improvement is not significantly better than the J48 wrap-
per using any combination of classifier/attribute set and thus, we
do not report these results here.
Table 8
Comparison of classifier accuracies with respect to the attribute set category.

Sets

OV G A D (A–OV) D (A–G)

J48 86.46 85.58 92.93 6.47 7.35
PART 85.46 84.98 91.83 6.37 6.85
JRIP 87.23 87.14 92.05 4.82 4.91
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Table 9
Comparison of classifier accuracies with respect to the use of filters and wrappers.

(a) Using only simple measures

OV OVC OVW D (OVC–OV) D (OVW–OV)

J48 86.46 85.59 89.78 �0.87 4.19
PART 85.46 85.30 89.50 Not sig. 4.04
JRIP 87.23 86.63 90.00 Not sig. 2.77

(b) Using only geometrical measures

G GC GW D (GC–G) D (GW–G)

J48 85.58 86.31 93.24 Not sig. 7.66
PART 84.98 86.31 90.13 1.33 5.15
JRIP 87.14 86.03 90.46 Not sig. 3.32

(c) Using all measures

A AC AW D (AC–A) D (AW–A)

J48 92.93 91.71 94.92 �1.22 1.99
PART 91.83 89.84 94.32 �1.99 2.49
JRIP 92.05 91.17 94.21 Not sig. 2.16

Table 10
Comparison of classifier accuracies with respect to the machine learning algorithm.

J48 PART JRIP D (J48–
PART)

D (J48–
JRIP)

D (PART–
JRIP)

OV 86.46 85.46 87.23 1 Not sig. �1.77
OVW 89.78 89.50 90.00 Not sig. Not sig. Not sig.
G 85.58 84.98 87.14 Not sig. �1.56 �2.16
GW 90.24 91.13 90.46 �0.89 Not sig. Not sig.
A 92.93 91.83 92.05 1.1 Not sig. Not sig.
AW 94.92 94.32 94.21 0.6 0.71 Not sig.
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4.4.3. Effects of different machine learning algorithms
In this section we investigate whether the different machine

learning algorithms yield significant performance differences. Ta-
ble 10 shows that there is not a noticeable difference in the accu-
racy of the classifiers trained with the three machine learning
algorithms. Similar trends were observed with the ROC area. JRIP
trains a better classifier when only accounting for geometrical
measures, performing 2.16% better than PART and 1.56% better
than J48. When using all the measures, whether applying the
wrapper or not, J48 generally performs slightly better. We have
not considered the results for the classifiers that are trained with
the CFS filtered attribute sets (OVC, OG, AC in Table 6) as these
classifiers do not achieve any significant accuracy improvement
over just using the original attribute sets (please refer to Section
4.4.2). From Table 10, one can conclude that using any of the three
machine learning algorithms would provide equivalent perfor-
mance, however one may consider interpreting decision trees to
be easier than rules or vice versa.
5. Related work

There is a large body of work in the image processing field on
studying and improving image segmentation algorithms but this
is not the focus of our work. Rather we try to find a solution to
the oracle problem when testing (medical) image segmentation
algorithms that are iteratively improved based on large image
benchmarks. Recall that the oracle problem in software testing is
the problem of finding a procedure to assess the correctness of test
results (in our case image segmentations) [19].

Defining an oracle is not a trivial task and may not be feasible at
all times. In [10,29] different solutions to the oracle problem are
proposed: design redundancy, data redundancy, consistency
checks, and the use of simplified data. Design redundancy attempts
Please cite this article in press as: K. Frounchi et al., Automating image segme
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to check if the output of the software under test corresponds to one
(or many) extra implementations of the specification of the soft-
ware under test. It may be that the output of all the software ver-
sions is incorrect which is less likely if it is assumed that the
software versions are independent. The independence assumption
has been empirically debated in [16], showing that it may not hold
at all times. Design redundancy is similar to multi-version pro-
gramming in regression testing [3]. ISAO uses an approach which
is similar to design redundancy since we use different implemen-
tations of the segmentation algorithm however we do not add
redundant versions of the software under test rather the different
versions of the software under test are the product of each itera-
tion of the segmentation evaluation swimlane in ISAO. In [7], a
methodology is proposed that uses design redundancy to identify
failures in mesh simplification programs, i.e., programs which at-
tempt to reduce the complexity of graphical objects to improve
the processing performance of these objects. In this methodology,
other already existing programs (referred to as reference models)
and their mutations are used to train a classifier capable of finding
faulty outputs from the program under test. The experiments in [7]
show that it is advisable to have reference models that resemble
the program under test. The best classification accuracies in [7]
range from 60% to 70%.

In data redundancy, similar to N-copy programming in the fault
tolerance domain [4], the input is re-expressed in different forms
and the output of the original input is checked for agreement with
the re-expressed inputs. In [21] the authors propose an approach
to help automate metamorphic testing (a data redundancy tech-
nique). Of course the inputs to the application require the defini-
tion of metamorphic properties for this kind of testing. These are
properties of the application domain, which can be used to produce
the same output from different inputs.

Consistency checking simplifies the oracle to just verifying
whether certain plausible conditions are met by the software un-
der test, and testing with simplified inputs ignores testing with
more complex inputs and only considers simpler inputs for which
an oracle can be devised.

None of these approaches offer any quantification of the reli-
ability of the oracle. In the case, where formal specifications exist
for the software under test, researchers have proposed methods
to derive oracles from formal specifications. This has been investi-
gated for real-time systems in [26], where the test case consists of
some test executions or sequences of stimuli. Test oracles in the
form of assertions are obtained using symbolic interpretation of
the specifications for each control point. A discussion on oracles
that are composed of assertions based on properties specified
either in first order logic or computation tree logic is given in
[18]. Assertions under the form of pre and post-conditions can also
be used as test oracles [6].

In [31], the authors use machine learning for evaluating the best
of two segmentations, produced by two different segmentation
algorithms (or two different settings of one segmentation algo-
rithm). The authors have a fundamentally different goal. Specifi-
cally, they attempt to find the better of two segmentations for an
image while we try to find whether the unknown segmentation
is (in)consistent with an already evaluated segmentation in order
to detect (in)correct segmentations (which does not correspond
to a better/worse segmentation). Also, the authors do not use any
similarity measures to compare the two segmentations as we do
for finding (in)consistent segmentation pairs. Instead, they evalu-
ate the goodness (e.g., color uniformity) of each segmentation by
applying measures that target each segmentation separately. Each
segmentation measurement leads to one decision tree, and the
comparison of segmentations is obtained by combining the results
of all the decision trees using meta-learning. It is also noteworthy
that their measures require the processing of image properties
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such as color and texture while our measures only rely on the data
from the segmentation labeling. In [33], the authors attempt to fix
segmentation outputs generated by unknown segmentation algo-
rithms. To do so, they apply measures to the test segmentations
that include spatial and intensity information. Adaboost (an algo-
rithm that builds stronger classifiers from multiple weak classifi-
ers) is used to find the combination of these measures that best
classify the mislabeled voxels. Manual segmentations created by
experts are required to train the classifier. This is in contrast to
our work, which tries to find a solution for helping image segmen-
tation developers to systematically test the revisions of their algo-
rithm during its evolution. Additionally, our approach only relies
on expert judgment, which is less expensive than asking experts
to create segmentations (so called ground truth). In [20], an appli-
cation is designed for comparing ground truth segmentations with
segmentations output by the segmentation algorithm under test.
The purpose of the application is to provide better visualization
of the output of the segmentation algorithms.
6. Conclusions

Image segmentation is widely used in medical imaging and
many other application domains. The production of a commercial
system requires the iterative development of specific algorithms
that must be repeatedly verified based on large benchmarks of
images.

This paper addresses the automation of the verification and val-
idation process of an image segmentation algorithm, through the
(semi)automated construction of a test oracle. In this paper we
propose an approach (referred to as ISAO – Image Segmentation
Automated Oracle) to replace the expensive, manual verification
of segmentations by medical experts with an automated oracle.
Its construction relies on machine learning to construct a classifier
from similarity measures that can predict the consistency between
two segmentations. This is then used to predict the correctness of
new segmentations for a benchmark of images as the algorithm
evolves. ISAO is generic in the sense that it can be applied to any
image segmentation software that goes through such an iterative
development and verification and validation procedure. Substan-
tial time and effort required by (medical) experts can therefore
be saved. Guidance as to how the segmentation algorithm can be
improved is provided by the learned classifier, thus leading to fas-
ter development time to delivery and hopefully increased testing.

In this paper, we have only introduced the application of ISAO in
a two-class segmentation problem (where the object of interest is
one class and the background is the other class). ISAO can also be
used in multi-class segmentation algorithms (i.e., where multiple
objects are each identified with one class in the segmentation)
since it can be applied for every class independently. The applica-
tion of ISAO to other forms of image processing is potentially inter-
esting and should be investigated in future work. Any image
processing algorithm that can be graded as correct/in-correct by
a human evaluator and, where metrics can be found for comparing
the output images is a plausible candidate for ISAO. Imaging prob-
lems such as inpainting or colorization are potential candidates to
investigate.

We investigated the performance of ISAO on the evaluation of
industry-strength cardiac left ventricle segmentation algorithms
based on real 3-D medical images (CT scans). Although there is
room for improvement, the results are very promising and fairly
simple classifiers show very good classification accuracies, thus
suggesting that the correctness of most segmentations can be
determined automatically and with high accuracy. For example,
using C4.5 decision trees with all available similarity measures,
and relying on a wrapper for filtering candidate measures, we
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achieve an average accuracy of approximately 95% and an average
area of 0.95 under the ROC curve when only using the training
data obtained from the first two versions of the segmentation
algorithm. Using machine learning also helps to understand
which similarity measures are relevant in determining what dif-
ferences between segmentations are important from a medical
standpoint. Results also show that the choice of a particular
learning algorithm is not significant, among the ones we consid-
ered here for generating logical rules. Using a wrapper to pre-se-
lect similarity measures is however effective. For maximum
accuracy, all types of similarity measures should be combined
to construct classifiers.

Future work will be directed towards testing the performance of
ISAO on various other segmentation applications. Most of the mea-
sures defined in this report can be re-used in other segmentation
contexts as the measures are not dependant on the left ventricle
segmentation problem.

Even though the results in this study are promising, more
experiments need to be conducted in order to investigate (1)
how many segmentation algorithm iterations are required for
the machine learning algorithm to be able to converge towards
an accurate classifier in other applications, (2) whether the set
of measures is complete enough (other segmentation algorithms
may require other measures), (3) the impact of the expert during
manual evaluation (possible mistakes, possible disagreements
between experts), (4) the impact of other evaluation frameworks
(e.g., the mapping between expert evaluation under the form of
a scale and the correct/incorrect evaluation), and (5) the use and
improvement of the ISAO tool support itself.
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