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Contrast Driven Elastica for Image Segmentation

Noha Youssry El-Zehiry, Member, IEEE, and Leo Grady, Member, IEEE

Abstract— Minimization of boundary curvature is a classic
regularization technique for image segmentation in the presence
of noisy image data. Techniques for minimizing curvature have
historically been derived from gradient descent methods which
could be trapped by a local minimum and, therefore, required
a good initialization. Recently, combinatorial optimization tech-
niques have overcome this barrier by providing solutions that
can achieve a global optimum. However, curvature regularization
methods can fail when the true object has high curvature.
In these circumstances, existing methods depend on a data term
to overcome the high curvature of the object. Unfortunately, the
data term may be ambiguous in some images, which causes these
methods also to fail. To overcome these problems, we propose
a contrast driven elastica model (including curvature), which
can accommodate high curvature objects and an ambiguous
data model. We demonstrate that we can accurately segment
extremely challenging synthetic and real images with ambigu-
ous data discrimination, poor boundary contrast, and sharp
corners. We provide a quantitative evaluation of our segmentation
approach when applied to a standard image segmentation data
set.

Index Terms— Euler elastica, weighted curvature, combinato-
rial optimization, primal formulation, image segmentation.

I. INTRODUCTION
CLASSIC approach to image segmentation is to formu-
late the problem as an energy minimization problem

E = Egata + Eboundary, (1)

where Egaa models the object and background appearance
(intensity, color, texture, etc.) and Epoundary models the bound-
ary of the object. The principle behind this model is that
the data term may be noisy or ambiguous, and therefore the
boundary model can be used as a regularization to overcome
this noise or ambiguity.

A classic prior model for the boundary of objects is the
elastica model which models the object boundary as having
short length and low curvature. This model was proposed and
theoretically justified by Mumford [20] and also appeared in
the first active contour work by Kass et al. [16] who proposed
an optimization of the boundary curvature. Subsequently, the
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optimization of boundary curvature became a common fea-
ture of variational methods for active contours and level
sets [7], [12], [27]. However, all of these methods use descent-
based optimization, causing the solution to get stuck in a local
minimum and depend strongly on having a good initialization.
This dependence on initialization (and speed of the curvature
optimization) have caused many researchers to abandon the
curvature term, particularly after combinatorial and convex
optimization methods became popular for producing global
optima of the data and boundary length terms. Beyond the
elastica model, curvature regularization has appeared in several
forms in the computer vision literature, of which Mumford’s
elastica model is just one example. Other approaches
use cycle ratios to provide curvature dependent image
segmentation [15], [24]. Schoenemann et al. presented glob-
ally optimal image segmentation by minimizing the ratio of
the flux over the weighted sum of length and curvature of the
object of interest. However, the memory requirements and the
computational time of this approach makes it impractical for
many vision applications.

Following the description by Bruckstein er al. [6] of the
curvature of a polygon, the curvature of an object boundary
was formulated on a graph by Schoenemann et al. [25] (and
previously in a different manner by the same authors [24])
such that combinatorial optimization methods could be
applied to optimize curvature. Specifically, on the graph
dual to the pixel lattice, the boundary of an object may
be described by a polygon comprised of graph edges, and
therefore the boundary having minimum curvature could
be found by optimizing over all polygons which had a
curvature value as defined by Bruckstein ef al.. The opti-
mization has been performed by casting the curvature for-
mulation into an Integer Linear Programming (ILP) problem
that assigns an indicator function to the edges of the
polygon. However, this optimization required a long com-
putation time (minutes to hours) and often did not find a
solution achieving a global optimum. The same optimization
framework has been used by Strandmark and Kabhl et al. [30].
The work of Schoenemann et al. [25] was followed by
El-Zehiry and Grady [10] who used a primal formulation of
the curvature energy that parameterized a space of boundary
polygons in terms of the normal vectors defined by lat-
tice edges and computed a solution in seconds which often
achieved a global optimum. For simplicity, in this work we
consider only the segmentation of an object from a back-
ground, i.e., a two-class image segmentation problem.

A major problem with the segmentation model in (1) is
the assumption that the data term is mostly unambiguous
and therefore strong enough to overcome objects which do
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Fig. 1. Two segmentation problems with an ambiguous data term as a
result of the object interior and substantial parts of the exterior sharing the
same distribution. User-provided object/background seeds are shown as red
and blue dots in the first column. First row: Segmentation of a lung tumor
in a chest CT scan. Graph cuts (weighted boundary length regularization)
produced a trivial segmentation around the foreground seed due to the poor
data term and poor boundary definition. Our contrast driven elastica model
correctly classified the pixels. Second row: Segmentation of the left atrium.
Again, graph cuts produced a trivial segmentation around the foreground seed
due to the poor data term and poor boundary, but our contrast driven elastica
provides the correct segmentation.

not fit the boundary model. For example, sharp corners in
a medical images have both long boundary length and high
curvature, which means that the data term in (1) would
have to be strong in order to avoid having the regulariza-
tion influence the segmentation toward an incorrect short
boundary length and low curvature segmentation. To avoid
this problem for the boundary length model, the geodesic
active contours [7] and weighted Graph Cuts [4] models
were introduced, which accommodated poor data terms by
weighting the boundary length regularization in areas of high
contrast. Effectively, these approaches allowed for objects with
long boundary length, as long as the boundary contrast was
high. Unfortunately, no such improvement has been proposed
to accommodate objects with high curvature. Due to the
recent improvements in optimization of the full elastica model
(including the curvature term), we propose a contrast driven
elastica model which allows objects to possess a high curvature
if the boundary contrast supports this conclusion. Using our
contrast driven elastica model, we can segment objects with
high boundary curvature even when the data term is ambiguous
or poorly defined. Figure 1 gives an example of a segmentation
problem with poor data term definition (since the object and
some of the background have an identical distribution), for
which the curvature term is necessary to obtain a quality
segmentation.

One method which has been used in past to address the
unreliability of a data term is to interactively incorporate user-
defined seeds; a foreground seed is a small subset of pixels that
have been labeled as belonging to object and a background
seed is a small subset of pixels that have been labeled
as belonging to background. These seeds may be obtained
interactively from a user who is specifying a particular object
(e.g., [4], [22]) or automatically from a system trained to look
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for a particular object (e.g., [13], [32]). For example, this type
of approach which uses seeds and contrast-sensitive edge
weighting has been employed with such popular algorithms
as Graph Cuts [4], Random Walker [14], geodesic segmenta-
tion [2] and power watersheds [9]. However, since curvature
is a function of triple-cliques it is much less clear how to
use traditional contrast weighting for a curvature regularization
model. Seeds may also be incorporated into our contrast driven
elastica method to interactively specify regions with poor data
term definition. As shown in Figure 1, our use of a contrast
driven elastica regularization is much more powerful than the
standard length regularization even in an interactive setting,
since it requires many fewer user interactions.

Most of the current curvature regularization
models [10], [21], [25], [30], [34] assume an unambiguous
data term that provides enough discrimination between the
object and the background. Our contrast driven elastica
regularization model does not have this constraint and works
efficiently whether a good data term exists or not. To the best
of our knowledge, we were the first to introduce a contrast
weighted curvature regularization model [11]. In 2013,
Krueger et al. [19] introduced a weighted pseudo-elastica
model that is aiming at optimizing an approximation of
curvature and it incorporated edge weights in a similar
fashion to Geodesic Active Contours (GAC) [7]. Unlike our
region based curvature regularization model, the approach
presented in [19] is an edge based model that requires the
user’s interaction to be on the boundary of the object of
interest. Comparison with edge based approaches are beyond
the scope of this paper. However, we highlight the main
differences between [19] and our current contribution.

First: our elastica model builds upon the Bruckstein discrete
representation of curvature in [6] which converges to the con-
tinuous notion of curvature if the graph resolution is increased.
The pseudo elastica model only presents an approximation of
curvature that does not converge to continuous curvature even
for finer grids. Moreover, to preserve a low computational
complexity, the optimization in [19] involves many heuristics
that result in an approximate suboptimal solution rather than
a global solution which we guarantee at least for 4-connected
grids.

Second: The pseudo-elastica model in [19] inherits all the
disadvantages of the edge based segmentation approaches,
and on the top of them, the inability to handle topology
changes in the object of interest. In other words, the final
boundary must be a continuous boundary representing the
minimal curvature path between the initial seed points defined
by the user’s interaction.

Finally, the seeds must be placed on the boundary itself
which is quite challenging. It requires accurate localization of
the seed points as any small deviation in the seeds may lead to
a shift in the whole boundary resulting in inaccuracies in any
quantitative measures that are dependent on the segmentation
accuracy (e.g. organ size, tumor shape descriptors, ..etc).
Moreover, placing the seeds on the boundary makes it harder
to automate the seed generation step which can be easily
done if rough brush seeds are used inside and outside the
object of interest.
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The advantage of the pseudo-elastica approach in [19] is that
it can handle open contours which cannot be easily done using
our region based weighted curvature regularization method.
This was illustrated by the filament example in [19, Fig. 9].

The rest of the paper is organized as follows: In Section II,
we build our contrast driven elastica model on the fast algo-
rithm introduced in [10]. In Section III, we test the model with
several experiments, including quantitative assessment on a
known database and a qualitative assessment on images which
were selected to highlight the strength of our model over all
known approaches. Finally, in Section IV we draw conclusions
and suggest future directions.

II. METHODS

We begin this section with a short review of the elastica
optimization method presented in [10] before proceeding to
our generalized contrast driven elastica formulation, optimiza-
tion and results.

A. Contrast Driven Elastica Energy

The continuous formulation of Mumford’s Elastica model
is defined for curve C as

E(C) = /(a +bx?)ds a,b >0, )
C

where x denotes the scalar curvature and ds represents the
arc length element. When a = 0 (the arc length is ignored),
the model reduces to the integral of the boundary squared
curvature E(C) = fc x2ds. The combinatorial optimization of
a discrete form of this model (in which boundary polygons are
mapped to cuts) has been presented in [10]. We now review
the main points of this formulation.

1) Curvature Energy: The use of combinatorial optimiza-
tion to minimize the elastica model prompted the discrete
formulation of the curvature on a graph. A graph G = {V, £}
consists of a set of vertices v € )V and a set of edges
e € £ CV x V. An edge incident to vertices v; and v; is
denoted ¢;;. In our formulation, each pixel is identified with a
node, v;. A weighted graph is a graph in which every edge e;;
is assigned a weight w;;. An edge cut is any collection of
edges that separates the graph into two sets, S € V and S,
which may be represented by a binary indicator vector x,

xi:[l if v; € S, 3)

0 else.

The cost of the cut represented by any x is given by

Cut(x) = > wijlxi — x]. (4)
eij

Bruckstein et al. [6] expressed the curvature of a 2D
polygon in terms of the angular change between consecutive
polygonal segments. Instead of a polygon, it was observed
in [25] that the polygon could be viewed as existing on
a dual graph. However, in [10] the idea of optimizing the
curvature of polygons normal to the edge sets was formulated
on a primal graph in order to permit an easier optimiza-
tion and more generalizable formulation. In this formulation,
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if two edges e;; and ej, incident to a node v;, are cut then
the cut is penalized with value

ap

P ———
min(le; |, ei])’

Wijk (5)
where a is the angle between the edges. Consequently, each
cut in the graph is associated with a polygon for which the
Bruckstein curvature can be measured and these curvature
measurements can be optimized. In the remainder of this man-
uscript, we use the term curvature to indicate the Bruckstein
curvature of the boundary polygons associated with each cut.

Specifically, it was shown in [10] that the triple clique
representing angular change in the boundary polygon can be
exactly decomposed into three edge weights

E(xi, xj, xr) = wijlxi — x| + wirlxi — x| — wjklxj — xkl,
(6)

where w;; = wir = wjr = %w,-jk.

Therefore, the minimum cut with respect to these edge
weights is a cut that finds the associated polygon with minimal
Bruckstein curvature. Despite the nonsubmodularity of the
curvature energy in (6), it was shown in [10] that Quadratic
Pseudo Boolean Optimization (QPBO) and Quadratic Pseudo
Boolean Optimization with Probing (QPBOP) are able to find
a minimum cut in most circumstances. Notice that although
the curvature clique was designed to penalize the cut of both
edges e;; and e;, the decomposition to pairwise interactions
introduces an edge ej; with negative weight. We denote the
set of effective edges (the set of original graph edges in union
with the set of these introduced edges) as £* D &.

2) Planar Versus Nonplanar Graphs: The formulation on
the primal graph in [10] is exactly equivalent to the original
formulation presented by Schoenemann in [25] when a planar
graph is used (i.e. the dual exists). This holds only for
4-connected lattices that may present metrication artifacts.
However, 8-connected graphs are nonplanar and hence have
no dual. In this paper, we propose to planarize the 8-connected
lattice by adding auxiliary nodes. Any nonplanar graph can be
planarized as follows:

1) Find all the edge crossings in the nonplanar graph.
2) Planarize the nonplanar graph by adding an auxiliary
node at each edge crossing.

Figure 2 shows the nonplanar 8-connected lattice and the
corresponding planarized lattice created by adding an auxiliary
vertex at the crossing of the diagonal edges. Hence, the
curvature formulation in [10] can be used for the planarized
lattice in Figure 2 (b).

3) Weighted Curvature Energy: The formulation presented
above from [10] places a strong penalty on boundaries
which have a high curvature, even if that curvature is well-
supported by the boundary contrast. Specifically, each edge
pair above is associated with an angle in the boundary
polygon. Therefore, we propose to relax the penalty asso-
ciated with a sharp angle when the angle is well-supported
with boundary contrast by weighting the corner (edge pair)
to reflect the boundary contrast. Traditional contrast edge
weighting formulas have been constructed in terms of node
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(a) (b)

Fig. 2. 8 point nonplanar graph may be planarized by inserting an auxiliary
node at each edge crossing of a nonplanar graph. (a) Nonplanar 8-connected
lattice, (b) Planarized lattice with auxiliary nodes (in gray) inserted at every
edge crossing.

pairs (corresponding to an edge). It is much less clear how to
construct a contrast-weighting formula for the type of node
triple-clique that forms the basis of the curvature formulation
in [10].

According to the curvature formulation in [10], edges e;;
and e;; are cut when the pixel i is a foreground pixel and
Jj and k are background pixels or vice versa. Therefore, we
propose to weight the curvature clique formed by these edges
by the appearance differences between pixels i and j and the
appearance difference between i and k. This can be formulated
as follows: Given a 2D image with image values associated
with each pixel (node), g : V — R. The weighted curvature
penalty wl”} ; is given by

* _ . / /
Wijf = Wijk Wij Wi, )

where we can use a typical contrast weighting function for the
pairwise edges [4], [28], such as

w}; = exp(—B(g(i) — g(/)?), 8)

and

wi = exp(—f(g (i) — g(k))?), )

where g(i), g(j) and g(k) represent the image intensities at
pixels v;, v; and vy, respectively and f is a free parameter
controlling the contrast strength. The triple weighted curvature
clique can be decomposed, similar to the unweighted case, into
three edge weights yielding

*

E(xi, xj, xi) = wy

[xi =21+ wilxi — xil — wilxj — xel,
(10)

where wl*j =wj = w;’fk = %wl*jk This weighting construction
is illustrated in Figure 3.

Note that we view gradients in image intensity as just one
illustrative model. More advanced contrast weighting could
also be used which applies differences in color, texture or
other higher-order features.

4) Boundary Length Energy: The second term in the elas-
tica energy of (2) is the boundary length term. The boundary
length term corresponds to the minimum cut term in graph-
based methods, which identifies the boundary length with a
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Contrast weighted
curvature

Ve - % V; Vi

curvature

Fig. 3. Weighted versus unweighted curvature cliques.

cut using edge weights which may be weighted to reflect
Euclidean boundary length [5].
The boundary length energy is represented by

Elength(x) = Z wijlx; — xjl,

eijei*

Y

where the boundary length weight w;; could be set to
wij = wl/.j (as in [4] and [7]), w;j = 1 or to reflect
Euclidean boundary length (as in [5]). Note that despite the
similarity of (10) and (11), the weighting (particularly the
negative weighting) distinguishes the role of these terms into a
penalty of boundary length or the Bruckstein curvature of the
associated polygon. However, the ability to write both terms
as a cut is what makes it possible (here and in [10]) to perform
the optimization efficiently.

5) Summary: The segmentation problem is modeled as the
solution, x, which minimizes the energy

E(x) = Egaa(x) + iElength + v Ecurvature (¥) (12)

for positive weighting parameters v and A that control the
strength of the boundary length term and boundary curvature
term, respectively.

In our experiments, we use a simplistic data term
(e.g., Chan-Vese data model [8]) to illustrate our method. This
data term is given by

Equa(¥) = D~ xi (8() — p)* + D (1 —x) (g(i) — up)*,
U;EV U;EV
(13)

where g(i) is the image intensity at the pixel v;, the values
of ur and up represent the mean intensity values of the
model intensities for object (foreground) and background.
If the data term does not provide informative discrimination
between the foreground and background (i.e., ur ~ up, see
examples in Figure 4), then the term is effectively removed
from the energy, leaving only the regularization terms to find
the appropriate segmentation.
The curvature term is written as a summation by

Ecurvature (X) = Z w?} i —xjl,

eijeé'*

(14)

where w?; reflects the contrast weighted curvature penalty and
is calculated from (7) and (8).

The boundary length term is given by (11). Foreground
and background seeds may also be used to constrain
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Segmentation Output using Graph Cuts [4]

— '
Segmentation Output using Random Walker [14]
. / ‘ ‘ \
- T L]
Segmentation Output using Unweighted Curvature and Unary Data Term [10]
—

_|

3

Segmentation Output using Contrast Driven Elastica

Fig. 4. Segmentation of synthetic images with identical foreground and background intensity profiles, weak object boundaries and irregular shapes. Comparison
of segmentation results via weighted boundary length (Graph Cuts) [4], Random Walker [14], unweighted curvature [10] and our contrast driven elastica

method.

the segmentation. A foreground seed v; is set to x; = 1 while
a background seed is set to x; = 0.

B. Optimization

In [10] and in our contrast driven formulation, the elas-
tica problem was transformed into the problem of finding
a minimum cut on a graph in which some of the edge
weights were negative. Unfortunately, the third term of (6)
violates the submodularity constraint and causes the minimum

cut problem to be nonsubmodular [18], i.e., straightforward
max-flow/min-cut algorithms will not yield a minimum cut.
However, it was shown in [10] that the Quadratic Pseudo
Boolean Optimization (QPBO) [17] and Quadratic Pseudo
Boolean Optimization with Probing (QPBOP) [23] offered a
solution to the optimization problem that frequently offered a
complete, optimal solution.

The QPBO technique has the remarkable ability to provide
a partial labeling of the variables which is optimal for all
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Fig. 5. Results of the weighted pseudo elastica segmentation approach [19] on the challenging synthetic images with no appearance discrimination between

the object of interest and the background.

labeled variables. The output of QPBO is
1 ifo; € S,
0 ifv; €S,
() otherwise.

Xi =

15)

Recall that S represents the set of nodes that minimizes our
discrete elastica energy.

Theoretically, an ambiguous data model (unary term or
terminal links in the graph) may cause the optimization scheme
using QPBO/QPBOP (used in [10]) to be more challenging
and to provide an incomplete labeling. However, a sufficiently
high 4 makes the problem submodular and hence exactly
solvable. In all of our experiments, despite using a smaller 1!
(for which the problem was still nonsubmodular), QPBOP
succeeded to provide a complete solution and thus a global
optimum of the contrast driven elastica model.

III. EXPERIMENTAL RESULTS

The motivation for our contrast driven elastica algorithm
was to employ higher-order (curvature) regularization for
objects with sharp corners, even in the presence of ambiguous
or poorly-defined data terms. Therefore, we must verify that
our contrast-weighting modification allows us to segment
objects with high curvature and poor data term differentiation
with respect to both a contrast weighted boundary length
regularization (i.e., graph cuts) and an unweighted curvature
regularization. Additionally, we must verify that our modifica-
tion of the elastica model does not cause it to behave poorly
on images with a good data term differentiation. We start by
demonstrating the strength of our model on synthetic and real
examples of images with poor data term definition and images
with sharp corners and complex boundaries. We show that
our contrast driven elastica algorithm is far superior to the
boundary length and unweighted curvature models. We then

'We used a smaller 4 because a very high value of 1 would make the length
term much more dominant and would diminish the effect of the curvature term.

proceed to present a quantitative comparison by applying our
model to a standard image segmentation database and to show
that it performs as good or better than existing algorithms
on this database, even though the data terms are relatively
informative.

A. Images With Poor Data Term Differentiation

In order to illustrate the difficulty associated with high
curvature objects and poor data term differentiation, we first
created some synthetic images which were designed to high-
light three major challenges: 1) Ambiguity of data term
(i.e., object and background share the same intensity profile),
2) Incomplete boundaries, 3) Accurate segmentation of high
curvature features such as cusps and sharp corners.

Figure 4 shows six synthetic images in which an appearance
term is not useful to define a segmentation and for which the
object boundaries are incomplete and the shapes are irregular.
Such images present a strong challenge to existing algorithms
which rely on appearance descriptions and a model of short
boundary length. For each image, we provide the results of our
proposed approach and a comparison with other segmentation
approaches typically used to segment such images. Segmen-
tation results for weighted boundary length (Graph Cuts) [4],
random walker segmentation [14] and unweighted curvature
segmentation [10] is presented. For the unweighted curvature
with unary data terms, ur and up are calculated as the mean
values for the foreground and background seeds as suggested
in [10].

Ambiguity of the data term is illustrated in the synthetic
examples we created in Figure 4, the foreground and back-
ground in these images share the same intensity profile.
Weighted boundary length segmentation favors the cut with the
minimum number of edges resulting is a trivial solution around
the seeds. Random Walker works, intuitively, by calculating
the probability that a random walk starting at a particular
pixel will first reach one of the seeds. Hence, it suffers from a
proximity problem that results in a premature stopping because



2514

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 6, JUNE 2016

Segmentation of disconnected objects using our approach.

Fig. 6. Comparison of the weighted pseudo elastica to our algorithm in
segmenting disconnected objects.

a random walk from an erroneously-background-labeled pixel
would have a higher probability reaching the background
seeds than the foreground one producing an undersegmented
object as illustrated by the result of the first and third images.
Unweighted curvature regularization also fails to provide a
proper segmentation. Since the unary data term does not
provide any discrimination in the first image, the minimum
curvature is obtained by assigning all the image to one class
except for the seeds of the other class. Our contrast driven
elastica approach provides the correct segmentation as it
extends the seeds due to strong contrast at the boundary. When
the boundary information is missing such as the gaps in the
second image and last closed polygons, the elastica model
favors to bridge these gaps and produce a connected object
because disconnecting them will result in a boundary of higher
curvature.

Incomplete boundaries such as the open polygons depicted
in the fourth and fifth input images of Figure 4 also challenge
the Random Walker due to the seed proximity, resulting in
substantial leakage through the large gaps. In comparison, the
contrast driven elastica seamlessly bridges these gaps in the
sense that it minimizes the curvature connecting the end points
of the polygons with straight segments. The same images
feature high curvature structures such as cusps. However, due
to the contrast present at these features, our algorithm is
capable to fit them precisely.

A notable contribution that was not included in the com-
parison in Figure 4 is the weighted pseudo-elastica model
presented in [19]. As discussed previously, comparison to
edge based methods is beyond the scope of this paper. How-
ever, we provide in Figure 5 the results obtained using the
weighted pseudo elastica on the challenging images with no
data discrimination to illustrate how to it compares to our
algorithm. In [19], the algorithm requires user interaction by
drawing two strokes that intersect the boundary of the object

Fig. 7. Sensitivity to the initialization for the pseudo elastica segmentation
algorithm in [19].

Fig. 8.

Sensitivity to the initialization for our algorithm.

of interest rather than strokes inside and outside the object
of the interest. To achieve fairness, we have experimented
with multiple stroke locations and tuned the parameters for the
best possible results that can be obtained using the algorithm.
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Random Walker

Input Image with Seed

Graph Cuts Unweighted Elastica Contrast Driven Elastica

Fig. 9. Medical examples of images with ambiguous data terms, weak boundaries and limited seeds. First row: Circumscribed mass in a mammogram.
Second row: Left ventricle in ultrasound. Third row: Liver in MRI. The Graph Cuts algorithm resulted in trivial solutions as a result of ambiguous data
terms, few seeds and poor boundary contrast. The Random Walker algorithm exhibited over dependence on seed proximity in these ambiguous images. The
unweighted curvature algorithm resulted in the minimum curvature boundary that fits the poor intensity profile provided by the seeds, producing false negatives.

In comparison, our contrast driven elastica model detected the correct boundaries in all cases despite these challenging images.

The top row of Figure 5 shows the initialization of the segmen-
tation for each image. The bottom row depicts the segmenta-
tion results obtained using the weighted pseudo elastica. The
results of the second and fifth images illustrate that the sharp
corners cannot be preserved very well even in the existence of
sharp contrast. We found this a consistent behavior no matter
how we choose the parameters. On the contrary, our weighted
curvature formulation preserves the corners very accurately
as long as they are supported with high contrast. Moreover,
when the images get more challenging (for example missing
boundaries), the algorithm fails to provide proper completion
to such boundaries as shown in the first and fourth images.
It is, to some extent, relevant to the corner preservation issue.
Had the edge in the bottom of the fourth image not been
missing, two corners would have formed. Due to the fact that
the corner has a missing edge, the weighted pseudo elastica
fails to properly preserve the corner and constructed a rounded,
smooth corner leading to the formed bottom edge being lower
than it is supposed to be.

Another aspect of the comparison to weighted Pseudo
Elastica is the ability to capture topology changes correctly.
The weighted pseudo elastica approach inherits the drawbacks
of the edge based segmentation approaches such as the failure
to provide proper segmentation in the existence of topology
changes. The approach provides the boundary as a single
connected component. However, our formulation is region
based and intuitively handles disconnected components of
a single object. Figure 6 illustrates the segmentation of an
object that consists of two disconnects circles. Our algorithm

seamlessly provides the correct segmentation of the circles.
Conversely, the weighted pseudo elastica falsely connects the
two circles.

Additionally, experimental evaluation showed that the
weighted pseudo elastica is very sensitive to the placement
of the initialization strokes to the extent that it may fail in
some cases as depicted in Figure 7 but our algorithm is more
robust to initialization as depicted in Figure 8.

B. Real Images With Ambiguous Appearance

Although the previous set of images were synthetically
created to highlight challenges in image segmentation, these
scenarios are actually quite common in the segmentation of
real images, particularly medical images. Figure 9 demon-
strates the performance of our model on some medical imaging
applications and different modalities.

Ambiguity of the data term is a common feature in a variety
of medical imaging segmentation problems. For example,
a circumscribed mass may have the same intensity profile as
the surrounding tissue, which is depicted in the first image
of Figure 9. The liver and the abdominal muscles share the
same intensity levels. Graph Cuts produce a trivial segmenta-
tion for these cases. The Random Walker results exhibit over
dependence on the proximity of the seeds in these ambiguous
situations, leading to both false positives and false negatives.
The unweighted curvature algorithm produces a boundary of
minimum curvature that respects the global data model derived
from the seeds, but fails to provide a quality segmentation due
to the poor quality of the global data model.
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TABLE I
WE COMPARE OUR CONTRAST DRIVEN ELASTICA SEGMENTATION
ALGORITHM TO FIVE OTHER ALGORITHMS ON THE GRABCUT
DATABASE OF [3]. THE DATA TERMS IN THIS DATABASE ARE
RELATIVELY INFORMATIVE AND THEREFORE ALL S1X ALGORITHMS
PRODUCE QUALITY IMAGE SEGMENTATION RESULTS. OUR CONTRAST
DRIVEN ELASTICA ALGORITHM PROVIDES SEGMENTATION RESULTS
WHICH ARE AS GOOD OR BETTER THAN THESE ALGORITHMS ON THIS
DATABASE. ADDITIONALLY, SECTIONS III-A AND III-B SHOW THAT
OUR ALGORITHM STILL MAINTAINS ITS QUALITY FOR IMAGES WITH
AMBIGUOUS DATA TERMS, EVEN WHEN THE OTHER ALGORITHMS
ARE UNABLE TO PRODUCE QUALITY SEGMENTATION. WE DID
NOT INCLUDE A COMPARISON TO THE UNWEIGHTED ELASTICA
BECAUSE ALL OF THE S1X ALGORITHMS LISTED ABOVE
Do NOT INCLUDE UNARY DATA TERM BUT THE
UNWEIGHTED ELASTICA IN [10] DOES SO THE
COMPARISON WILL NOT BE FAIR

BE GCE VOI RI
Graph Cuts 3.276 | 0.028 | 0.196 | 0.970
p-brush (p = 1.25) 3.241 | 0.028 | 0.193 | 0.971
p-brush (p = 1.75) 3.206 | 0.027 | 0.187 | 0.972
Random Walker 3.206 | 0.026 | 0.185 | 0.972
Power Watershed 2.888 | 0.025 | 0.210 | 0.970
Contrast Driven Elastica | 2.683 | 0.024 | 0.205 | 0.971

Objects with weak boundaries also appear frequently in
medical images. For example, the boundaries of the left atrium
shown in Figure 1 or the boundaries of the left ventricle
depicted in Figure 9. In both cases, the Graph Cuts and
unweighted curvature algorithms yield a trivial solution due
to the lack of any discriminatory power of the data term.
Due to the seed proximity, the Random Walker algorithm
leaks through the gaps in the boundary, resulting in an over
segmented object. However, leakages are prevented using our
contrast driven elastica approach because any leakages in the
boundary will have a higher curvature and will produce a
higher energy solution.

C. Assessment on a Database With
Positive Data Differentiation

In this section, we examine whether our modified elastica
model can perform well when there is a substantial differenti-
ation in the data term. To assess this issue, we provide a quan-
titative comparison between the performance of our contrast
driven elastica algorithm with the contrast-weighted boundary
length model (Graph Cuts)? [4], the p- brush approach in [29]
(with two different p values) the Random Walker of [14])
and the power watershed [9]. We applied the six algorithms

2An independent comparison of our approach in [11] versus graph cuts was
done by Krueger et al. in [19] on very challenging medical images. They
show that our model provides better segmentation results.
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Fig. 10.

Sample of the segmentation results of the grab cut data set with
the different segmentation methods.

to the set of images in the Microsoft GrabCut database used
in [3]. The database contains ground truth segmentation for
50 color images corresponding to indoor as well as outdoor
scenes. We quantify the results using four segmentation error
measures [33]:
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1) Rand Index (RI)

2) Boundary Error (BE)

3) Global Consistency Error(GCE)
4) Variation of Information (VOI)

A good segmentation should have a high Rand index and
low boundary error, global consistency error and variation
of information. All the images are processed with v = 400,
A=50and § = ﬁ@, where g is the input image. For all

the images, QPBO/QPBOP succeeded to provide a complete
solution and label all the pixels in our contrast driven elastica
method (i.e., a global optimum of the contrast driven elastica
model was obtained in each case).

Table 1 shows the mean results of these segmentation’
algorithms for the fifty images in the data set. It can be
seen that the segmentation obtained by the contrast driven
elastica are as good or better than the other algorithms
on these images, even though they generally have a fairly
strong data term differentiation between the object and the
background. Figure 10 show a sample of images and their
segmentation results using random walker, power watershed
and our weighted elastica model, respectively. In the first
four images, we show some of the thin structures where the
strength of the curvature model is leveraged, the curvature
model can capture much better the top part of the cross,
the strap of the backpack, the tip of the banana and the
arms of the tennis player. The fifth to the last image feature
blob-like structure and illustrate that our model performs
as good or better than the remaining methods for such
images.

I'V. CONCLUSION

Curvature minimization is a classic regularization model for
image segmentation that has received less attention in the past
during to the difficulty of optimizing curvature models. The
recent advances in introducing efficient formulations and opti-
mization of curvature [1], [6], [10], [25], [26], [31], [34] have
revived the research efforts in applying curvature regulariza-
tion to vision problems such as image segmentation, denoising
and inpainting. However, a major challenge associated with
minimum boundary curvature models is the segmentation of
high curvature structures such as sharp corners and cusps.
Previous models such as [11] and [25] associated the curvature
regularization with a global data model to help segment such
structures. Unfortunately, in practical applications, foreground
and background may share the same data profile (i.e., may
have the same intensity or texture distributions). In such cases,
the curvature segmentation schemes in [11] and [25] would fail
to provide an accurate solution. In this paper, we proposed an
image segmentation model that weights the curvature locally
by the contrast information. We also added the length term
to the curvature to complete the formulation of the elastica
model originally proposed by Mumford in [20]. The inclusion
of the length term allows us to find a global optimum of the
model using QPBO/QPBOP in a few seconds.

3Some of the results were copied from the original papers of the authors
and other were calculated using the authors’ implementations and parameters
choice to guarantee a fair comparison.
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Our quantitative assessment on the GrabCut database shows
that our contrast driven elastica model works as good or
better than weighted boundary length minimization (Graph
Cuts), Random Walker, p-brush and power watershed in the
images where the data term provides some discrimination.
However, our experiments demonstrate that our model can
additionally be used to complete object boundaries in syn-
thetic and real images in which the object/background shared
the same appearance, significant parts of the boundary were
missing and the target objects possessed an irregular shape.
In contrast, other leading algorithms which are known for
robust behavior were unable to achieve quality segmentation
of these challenging images.

Future work will focus on using more sophisticated appear-
ance terms, extension to 3D segmentation and optimization
via parallel processing (e.g., GPUs). Additionally, since our
contrast driven elastica provides a general regularization for
noisy or ambiguous data, we may be able to apply the contrast
driven elastica to other applications in computer vision beyond
image segmentation.
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