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Abstract. Ultrasound acquisition is a challenging task that requires simul-
taneous adjustment of several acquisition parameters (the depth, the focus,
the frequency and its operation mode). If the acquisition parameters are
not properly chosen, the resulting image will have a poor quality and will
degrade the patient diagnosis and treatment workflow. Several hardware-
based systems for autotuning the acquisition parameters have been previ-
ously proposed, but these solutions were largely abandoned because they
failed to properly account for tissue inhomogeneity and other patient-specific
characteristics. Consequently, in routine practice the clinician either uses
population-based parameter presets or manually adjusts the acquisition pa-
rameters for each patient during the scan. In this paper, we revisit the prob-
lem of autotuning the acquisition parameters by taking a completely novel
approach and producing a solution based on image analytics. Our solution is
inspired by the autofocus capability of conventional digital cameras, but is
significantly more challenging because the number of acquisition parameters
is large and the determination of “good quality” images is more difficult to
assess. Surprisingly, we show that the set of acquisition parameters which
produce images that are favored by clinicians comprise a 1D manifold, allow-
ing for a real-time optimization to maximize image quality. We demonstrate
our method for acquisition parameter autotuning on several live patients,
showing that our system can start with a poor initial set of parameters and
automatically optimize the parameters to produce high quality images.

1 Introduction

Ultrasound imaging requires the adjustment of multiple parameters, e.g. the depth,
focus, the frequency and the frequency operation mode (general or Tissue Harmon-
ics Imaging (THI)). The correct choice of parameters has a great impact on the
quality of the output image and, in practice, the default parameters recommended
by the manufacturer do not always produce a good quality image, The acquisition
of a good quality image is a very challenging task especially for difficult patients
who have large body habitus. In particular, an abdominal scan involves multiple
organs at different depths, is strongly affected by body habitus and requires signifi-
cant manual tuning (20-45 minutes on average). Previous efforts to produce a good
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quality image have focused on the hardware aspect of the acquisition by design-
ing probes that have the potential to provide better images [1,2,3]. For example, a
curvilinear probe enables larger tissue penetration at the expense of the anatomic
image resolution, while a linear array probe provides fine details but can only scan
superficial structures. Other hardware solutions include introducing new materials
to the sensors used in the transducer [4] and adaptive beamforming with its varia-
tions [5,6,7]. Image analysis approches focus on postprocessing to enhance the image
after the acquisition is complete (e.g. [8]). Postprocessing methods transform the
acquired data rather than improve the acquisition.

We revisit the problem of autotuning the acquisition parameters by presenting a
novel software-only approach based on image analytics and inspired by the autofocus
system in a conventional digital camera. However, tuning the acquisition parameters
of an ultrasound device is significantly more challenging than conventional camera
autofocus due to the larger number of parameters and the challenge in measuring the
quality of an ultrasound image. In contrast, autofocus in a digital camera optimizes
a simple measure of image sharpness over just one parameter (focal length). The
key contribution of our work is to learn a low-dimensional manifold on which lie all
acquisition parameters that result in sonographer preferred images. We then train
a machine learning system to model the image quality assessment given be experts
and show how to efficiently optimize the image quality over the low-dimensional
manifold of sonographer preferred acquisition parameters.

2 Methods

Our method for automatic tuning the ultrasound acquisition parameters is inspired
by the autofocus in a digital camera. The autofocus in digital cameras works by op-
timizing the focal length to obtain the image with the best contrast. In ultrasound
acquisition, we aim at developing an ultrasound autotuning in a similar manner,
except that ultrasound acquisition is significantly more challenging since it requires
optimization of several parameters instead of just focal length. The second ma-
jor challenge is that the quality of the ultrasound image, unlike the optical image
captured with the autofocus of a conventional digital camera, cannot be simply
assessed by measuring the contrast. In this section we present the formulation of
the autotuning problem for ultrasound and we will keep the parallel analogy to the
autofocus in digital cameras to enhance the exposition of our solution.

Let the configuration of ultrasound parameters consisting of the depth, focus,
frequency and operation mode (THI or GEN) be denoted as x and the image ac-
quired with x be denoted as I(x). Assume that the quality of the image can be
represented by a function Q(I(x)). The autotuning problem is described as

max
x

Q(I(x)). (1)

In the autofocus for digital cameras, x is simply the focal length and Q(I(x) is the
image contrast. In ultrasound autotuning, there are two challenges that we must
address in the paper: First, the development of a quality measure Q(I(x)) for the



ultrasound image. Second, the solution of (1) , i.e., finding the optimal parameter
configuration x the provides an image I(x) with the maximum quality.

2.1 Image Quality Assessment

The assessment of ultrasound image quality is a perceptual characteristic that is
difficult to model with an explicit formula, since it depends on several factors such
as brightness, sharpness, contrast, resolution, and whether the organ of interest is
in focus or not. In the absence of an explicit formula for Q(I(x)), we propose to
sample a range of images I(x) and learn the Q(I(x)) mapping for perceptual quality.
We train a Support Vector Machine (SVM) regressor based on a set of biologically-
inspired features [9,10]. The feature extraction scheme uses a hierarchical approach
that consists of four layers of computational units, building an increasingly complex
and invariant feature representation by alternating between simple S layers and
complex C layers. We have chosen this hierarchical model as it emulates the object
recognition in the human visual cortex. The training images were collected from 9
different subjects and we tested on 4 different subjects that were never scanned in
the training phase. The data set consists of abdominal scans of seven different organs
for each subject: aorta, liver, right kidney, left kidney, pancreas, spleen and gall
bladder. A total of 192 images were used in the training. A sonographer provided a
grade for each image. The convention used for the grading as suggested by the expert
clinician is as follows: Grades 1-6 are given to a poor quality image that cannot be
used for diagnosis and treatment. Grades 7-8 are given to to minimally acceptable
images Grades 9-10 are given to images for which no further improvement is possible.
The variability between 9-10 reflects the variability in an expert’s preference. For
each input image, we used the feature extraction in [9] and calculated a total of 4075
features. We have performed a Sequential Minimum Optimization (SMO) regression
with a normalized polynomial kernel and a reduced feature set that has 10 features.

2.2 Optimization

The second challenge in designing the ultrasound autotuning is the optimization of
the image quality or choosing the parameter configuration that produces the best
quality image. For digital cameras, a gradient search is sufficient to solve the prob-
lem because it is a 1D search for the optimal focal length and hence can be done
efficiently. However, ultrasound autotuning is more challenging than autofocusing
a digital camera because ultrasound autotuning requires optimization over several
parameters. A naive solution would be to do a grid search for the parameter con-
figuration that optimizes the image quality. However, this is very computationally
expensive and cannot be performed in real-time acquisition systems. A key insight
of our paper is that the known relationship of the acquisition parameters can be
exploited to perform a search over a lower-dimensional space of virtual parameters.
As an example of this relationship between acquisition parameters, the physics of
ultrasound dictates that a deeper focal depth should require a lower frequency. To
perform a dimensionality reduction on our space of acquisition parameters, we em-
ploy manifold learning. Specifically, we applied manifold learning to determine if



a lower dimensional manifold contains all configurations of acquisition parameters
that produce large Q(I(X)). Training data were collected from 9 different subjects.
For each subject, 7 different organs were scanned. We obtained a total of 32 “good”
configurations that produce images with grade 9 or 10 as judged by an expert. We
applied diffusion maps manifold learning [11] on the 32 configurations to learn the
intrinsic dimensionality of the acquisition parameters.

Although we suspected that the relationship between parameters would lead
to a lower-dimensional manifold, we were surprised to find that the manifold of
configuration parameters leading to a good image is one-dimensional, the
manifold is depicted in Figure 1(a). This one-dimensional manifold of good parame-
ters means that any good quality ultrasound image can be determined by optimizing
a single virtual parameter. Consequently, we can perform the parameter optimiza-
tion very quickly by projecting the input parameter configuration to the manifold
of good parameter configurations (using k-nearest neighbors) and then optimizing
the configuration parameter by a simple gradient ascent (relative to Q(I(X))) along
the manifold surface. The algorithm is shown in Algorithm 1.

3 Experimental Results

The objective of our experiments is two fold: First, to test the quality score produced
by our system against the quality score assigned by an expert. Second, to test,

Input: Default acquisition parameters x and the learned manifold pairs (x, y). y is
the representation of x on the learned 1D manifold

Output: Parameter configuration that produces the best quality image

INITIALIZE xi to x and calculate Q(I(xi))
while Q(I(xi + 1)) > Q(I(xi)) do

1. Project the set of parameters xi to the lower dimensional manifold using an
interpolation of the kNN with k = 5, to obtain lower dimensional configuration y.

2. Find ym the closest point to y on the manifold.
3. Take a small step t along the manifold to obtain the new low-d parameters yi+1.
4. From the database of pairings (x, y), obtain the back projection xi+1 that

corresponds to the adjusted low-d parameters yi+1. xi+1 is the new set of
parameters in the original parameter space.

5. Acquire a new image I(xi+1) and calculate Q(I(xi+1))

end
if Q(I(xi+1)) < Q(I(xi)) and direction of movement has never been changed then

Change the movement direction and GOTO 1.
else

Terminate
end

Algorithm 1: Steps for automated tuning of ultrasound acquisition.



Fig. 1: Left: Manifold of parameters producing good images. Different colors indi-
cate different organs. Right: Correlation between the expert’s grade and our system.

on live patients, whether our ultrasound autotuning system succeeds to provide a
parameter configuration that produces a good quality image. Our experiments are
performed using a Siemens S2000 Ultrasound scanner.

3.1 Quality Assessment Evaluation

For the testing of the quality assessment, we have used 280 images that were not
used in training. Figure 1(b) depicts a scatter plot of the grades given by the expert
clinician and the grades obtained by our system for the training data set. The
correlation coefficient on the ratings was 0.82 and the average error on the training
set was 1.3 (in units of 1-10 scale).

3.2 Live Ultrasound Acquisition with our Autotuning System

We tested our autotuning system with a live ultrasound acquisition where the expert
clinician starts with default preset parameters that usually yields bad/moderate
image quality and our system generates the new set of parameters to acquire a
second image. The clinician is asked to rate the output image and evaluate whether
or not this image can be used in the clinic. If the expert clinician rates the image
acquired with the new parameters as a bad image, we re-adjust the parameters based
on a small step along the manifold shown in Figure 1 (a) and we repeat this process
until a good quality image is reached or no further improvement can be made.
We chose to run the testing on abdomen scans because each of the seven organs
is scanned with a different set of parameters. Manually changing the parameters
when moving from one organ to another is very tedious and requires 20-45 minutes
per scan. Replacing the manual acquisition tuning with an automatic tuning would
provide a great benefit to the workflow.

Figure 2 shows the detailed steps of one of our experiments. In this experiment,
we aim at scanning the aorta. We started from the abdomen default set of pa-
rameters. The default parameters generated a poor quality image as judged by the
expert (grade = 2). Our system applied Algorithm 1 to autotune the parameters



(a) Default (b) No.1 - G = 2 (c) No.3 - G = 4 (d) No.5 - G = 4

(e) No.6 - G = 6 (f) No.8 - G = 8 (g) No.9 - G = 9 (h) 10 - G = 10

Fig. 2: Autotuning of the acquisition parameters for an aorta scan. The first image is
acquired with the Siemens abdomen default preset (Frequency = THI/H 5MHz, depth =
16cm and focus = 10cm). The last image is acquired using the auto tuned parameters
(Frequency = THI/ H 6MHz, depth =11cm and focus = 6cm).
Note: We are only showing 7 iterations out of 10 due to space limitation.

until termination. In Figure 2 the top left corner of each image has a schematic
diagram that illustrates the idea of the parameter adjustment along the manifold,
each red circle represents the projection of the acquisition parameters to the 1D
manifold and the arrows represent the movement towards/along the manifold of
the good parameter space depicted by the blue curve in the figure. The caption of
each subfigure shows the iteration number and the grade (G) given by the expert.

Figure 3 shows a sample of our results for different subjects and different organs.
The examples of this figure reveal different aspects of strength for our autotuning
algorithm. These images are acquired from three different subjects with varying
body mass indices (the subject in the first row has the lowest body mass index and
the subject in the third row has the highest body mass index) which reflects that
our algorithm works equally well for these challenging image acquisition scenarios.
The first example in the figure tests whether the algorithm is capable of providing
a good set of parameters if the starting set deviates from the manufacturer recom-
mendation. The starting set of parameters were recommended by the clinician. The
clinician’s recommendation is generally based on the gender, race and body mass in-
dex of the patient. We have performed 5 acquisitions with a clinician’s recommended
parameter initializations and in all cases our system autotunes the parameters to
produce a good quality image as judged by the expert. The kidney image obtained



Fig. 3: Sample results for the autotuning system. Row 1: Left kidney. Row 2: Liver.

by the autotuned parameters was graded 10 by the expert clinician. The example
in the second row shows the scan of a fatty liver which is very challenging as it
requires very deep penetration. The figure depicts that our algorithm was capable
of producing the correct frequency, depth and focus for imaging.

Figure 4 shows a summary of the quantitative assessment of our algorithm. The
testing scan were performed on four different patients (denoted as P1, P2, P3 and
P4) that were not scanned in the training phase. Due to limited scanner time, we
could not scan the seven organs for each subject, however, we managed to test
16 different scenarios. In all of our experiments, the algorithm provided a set of
parameters that yielded a good quality image rated 9 or 10 by an expert. The
summary is given by the bar chart depicted in Figure 4.

4 Conclusion and Future Work

In contrast to previous work on the topic of ultrasound acquisition autotuning
which employed hardware solutions, we proposed a novel software-only solution that
learns the manifold of the set of ultrasound acquisition parameters which produce
high-quality images. Our experiments show the surprising fact that this set lies
on a 1D manifold. We demonstrated the excellent performance of our system and



its capability to produce a good quality image (100% accuracy) in live ultrasound
acquisition experiments. Comparison to hardware-based solutions was not presented
due to the lack of access to such hardware systems. The future work will focus on
the improvement of the quality assessment performance to reach higher correlation
between the expert clinician’s grade and the grade obtained by our system. We also
plan to run a large scale study that contains more data to validate our manifold.
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