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ABSTRACT

Vascular diseases are among the most important health prob-
lems. Vessel segmentation is a very critical task for steno-
sis measurement and simulation, diagnosis and treatment plan-
ning. However, vessel segmentation is much more challenging
than blob-like object segmentation due to the thin elongated
anatomy of the blood vessels, which can easily appear discon-
nected in the acquired images due to noise and occlusion. In
this paper, we present a generic vessel segmentation approach
that extracts the vessels by globally minimizing the surface cur-
vature. The low curvature model enforces surface continuity
and prevents the formation of false positives (leakages) and
false negatives (holes). We present two contributions: First,
we introduce a generic 3D vessel segmentation model by pe-
nalizing the boundary surface curvature. Second, we introduce
an attraction force as a generalization of the boundary length
in the elastica model, which guarantees a complete global so-
lution and avoids shrinkage bias of length regularization. Our
results will illustrate that the approach works efficiently across
different acquisition modalities and for different applications.

Index Terms— Segmentation, Vessel Segmentation, Com-
binatorial Optimization, Curvature, Graph Methods

1. INTRODUCTION

Vessel segmentation approaches vary widely according to the
prior information used in the segmentation, e.g.; appearance
models, geometric models, and hybrid models (see [1] for ex-
tended reviews). Despite this wide variety of vessel extraction
schemes, there is not a single model that can work efficiently
across modalities. Each vessel segmentation approach seems
to be customized to handle a specific application in a particular
modality. Here, we highlight the drawbacks associated with
the state-of-the-art vessel extraction schemes as reviewed by
Lesageet al. [1] and propose a generic model that overcome
these drawbacks.Centerline based methodsaim at extracting
the vessel centerline without providing any surface informa-
tion. Region growingextraction techniques extend the vessels
by testing the neighbors of a given voxel against a predefined
inclusion criterion. They suffer from topological problems that
result in holes (false negatives) and leakages (false positives)
in the final segmentation. Active contoursrepresent another
major category of vessel extraction schemes; Parametric active
contours are proven to be efficient in 2D segmentation but the
parameterizations get very complicated in 3D. On the other
hand, the formulation of geometric active contours (level sets

formulation) can simply be extended to 3D but at a very high
computational cost. Thin structures can also be segmented
by imposing directional propagation information such as flux
based approaches [2]. Although these approaches help elimi-
nate leakage and premature stopping, they can not bridge gaps
in the vessels. Additionally, the Euler-Lagrange optimization
schemes, used to minimize active contour models, converge
easily to local minima. Hence, we conclude that ageneric
vessel segmentation model should satisfy the following crite-
ria: 1) Topology preservation: The algorithm is respective
of the vessel topology,i.e., preserve continuity of the surface
and prevent the formation of false negatives (holes) and false
positives (leakages). 2)Global optimization: The algorithm
can be optimized globally to capture the global solution and
eliminate the need of tailored initialization. 3)Reusability:
The algorithm is reusable across different modalities.

In order to provide such agenericmodel, we build on the
recent work in [3] to propose a segmentation method which
generates the vessel segmentation as theglobal optimization
of a model that penalizes boundary curvature. The advantage
of curvature optimization (shown theoretically by Mumford
[4]) is that, in the absence of reliable image data, it encourages
the segmentation of straight lines, which can be used to bridge
gaps. Additionally, leaking is suppressed because the leak
points often create unnecessary curvature, which is penalized.
Curvature minimization has been proven in practice to provide
good vessel segmentation (e.g., [5, 6]), but previous work has
not been able to provide a global optimization.

The algorithm developed in [3] was demonstrated to have
the ability to bridge regions of a vessel for which the image
information was incomplete as a result of stenosis, occlusion,
etc. In this work, we extend this method in two important
ways. First, we extend the formulation of the method to 3D,
which is necessary in order to apply the method in several
imaging modalities. However, this 3D formulation has the
problem that the optimization had more difficulty producing a
global optimum (see Section 2). Additionally, when leaking
is a concern, we want the flexibility to deemphasize the inten-
sity model and also to fix background seeds in confounding
structures. In the original formulation of [3], the reduction
of influence for the intensity model in favor of seeds would
also cause the optimization method to fail. Therefore, the
second contribution of this work is to decompose the bound-
ary length term in the elastica model [4] into foreground and
backgroundattraction forcesyielding a generalized elastica



model. This decomposition allows independent control over
foreground and background voxels that yields a solution with
the foreground voxels intact and without causing the shrinkage
bias associated with length regularization. More importantly, it
enables the Quadratic Psuedo Boolean Optimization (QPBO)
and Quadratic Psuedo Boolean Optimization with Probing
(QPBOP) to provide a complete global solution. Elimination
of unary terms enables the algorithm to segment, with aid of
seeds, objects the share the same intensity profile.

2. METHODS

We begin this section with a review of the 2D curvature opti-
mization framework presented in [3] before proceeding to our
3D extension of this approach, addition of an attraction force
and details on the optimization.

The continuous formulation of Mumford’s Elastica model
[4] is defined for curveC as

E(C) =
∫
C
(a + bκ2)ds a, b > 0. (1)

whereκ denotes the scalar curvature andds represents the arc
length element. Whena = 0, the model reduces to the integral
of the boundary squared curvatureE(C) =

∫
C κ2ds.

The use of combinatorial optimization by [3] to minimize
the elastica model prompted the discrete formulation of the cur-
vature on a graph. A graphG = {V, E} consists of a set of
verticesv ∈ V and a set of edgese ∈ E ⊆ V × V. An edge
incident to verticesvi andvj is denotedeij . In our formulation,
each voxel is identified with a node,vi. A weighted graph is
a graph in which every edgeeij is assigned a weightwij . An
edge cut is a set of edges that separates the graph into two sets,
S ⊆ V andS, which may be represented by a binary indicator
vectorx, such that,xi = 1 if vi ∈ S and 0, otherwise. The
cost of the cut represented by anyx is given by

Cut(x) =
∑
eij

wij |xi − xj |. (2)

In [3], we have introduced the discrete representation of
curvature on the primal graph. In this formulation, if two edges
incident on a nodevi, eij andeik, are cut then the cut is penal-
ized with valuewijk = αp

min(||−→eij ||,||
−→
eik||)

, whereα is the angle

between the edges. This cut penalty is then exactly decom-
posed into three edge weights

E(xi,xj ,xk) = wij |xi−xj |+wik|xi−xk|−wjk|xj−xk|, (3)

wherewij = wik = wjk = 1
2wijk. Despite the negative

weights, it was shown in [3] that QBPOP was able to find a
minimum cut in most circumstances. Notice that although the
curvature clique was designed to penalize the cut of both edges
eij andeik, the decomposition to pairwise interactions add an
edgeejk with negative weight. We denote the set of effective
edges with nonzero weights asE∗ ⊇ E .

Extension to 3D: The graph-based formulation presented
in [3] and reviewed above associates cut costs with the curva-
ture for the boundary on a dual graph. Unfortunately, many
graphs of interest in 2D (e.g., an 8-connected lattice) are non-
planar and therefore have no dual. However, in [3] it was shown

Fig. 1. Six point neighborhood used in evaluating the 3D curvature.

that the formulation may also be applied to nonplanar graphs
by simply computing angles between the edges incident on a
node, applying the decomposition in (3).

Extending this method to 3D follows the same approach.
Since a 6-connected lattice, depicted in Figure 1, has a dual
complex [7], it is straightforward to interpret this curvature for-
mulation in terms of penalizing the corners formed on the 3D
surface of the dual complex. However, boundary optimization
on a 6-connected lattice is well-known to produce undesirable
gridding artifacts. Consequently, it would be desirable to ex-
tend this method to apply to 3D lattices of higher-order con-
nectivity, such as a 26-connected lattice. Unfortunately, since
the dual representation is not as clear in this case, it is quite
difficult to determine which pairs of edges should be penal-
ized. Here, we performed this extension by penalizing 8 planar
cliques (same cliques of the 8-connected lattice in 2D [3]) and
16 cliques; eight to each of the upper and lower planes. The
added cliques represent a higher resolution partitioning of the
unit sphere which should yield a smoother surface.

Optimization: In the previous sections, curvature regular-
ization was formulated into the problem of finding a minimum
cut on a graph in which some of the edge weights were neg-
ative. Unfortunately, the negative edge weights introduced by
the third term of (3) cause the min-cut problem to be nonsub-
modular [8],i.e., straightforward max-flow/min-cut algorithms
will not yield a minimum cut. However, it was shown in
[3] that the Quadratic Pseudo Boolean Optimization (QPBO)
and Quadratic Pseudo Boolean Optimization with Probing
(QPBOP)[8] frequently offered a solution to the optimization
problem that is complete and optimal.

In our extension of this work to vessel segmentation, we
encounter two difficulties with this optimization approach. 1)
In our experience the structure of the negative weights encoun-
tered in the 3D construction more often leads to incomplete
solutions from QBPO. 2) Intensity models are often unable to
distinguish vessels from other proximal structures (e.g., two
touching vessels). Therefore, in these circumstances we want
the ability to modify the construction to remove the intensity
model and instead supply a seed in the confounding structure.
Unfortunately, without an intensity model (unary term), then
QBPO will be completely unable to label the voxels. To re-
solve this problem, it is possible to add the length term of the
Elastica to decrease the non submodularity of the energy func-
tion. However, it is well-known that the length regularization
introduces a shrinkage bias so we decompose the length term
into foreground and backgroundattraction energiesin order to



produce a complete labeling of the vessel and control the fore-
ground and background independently to avoid shrinkage.

Attraction Energy: The second term in the elastica energy
of (1) is the boundary length term. The boundary length term
corresponds to the minimum cut term in graph-based meth-
ods, which identifies the boundary length with a cut using edge
weights which may be weighted to reflect Euclidean boundary
length [9]. Therefore, combining our formulation of discrete
curvature with boundary length, we obtain a discrete formula-
tion of the elastica model as:

E(x) = λ
∑

eij∈E∗
wij |xi − xj |+ µ

∑
eij∈E∗

w∗
ij |xi − xj |, (4)

wherewij could be set towij = 1 or to reflect the Euclidean
boundary length (as in [9]) and the weightsw∗

ij are the cur-
vature penalties in (3). We may generalize the elastica model
by decomposing the length term into aforeground attraction
force and abackground attraction force. The minimization
of the length term expressed by

∑
eij∈E∗ wij |xi−xj | is equiv-

alent to the maximization of the function∑
eij∈E∗

wij (xixj + (1− xi)(1− xj)) . (5)

Foreground and background attraction forces are analogous to
inflation and deflationballoon forcespresented in [10], with
the difference that the attraction forces operate on pairs of vox-
els. While an inflation force encourages every individual voxel
to be labeled foreground, a foreground attraction force encour-
ages attraction between pairs of voxels by enforcing neighbor-
ing voxels to have the same foreground label. Consequently,
we may consider a generalized elastica model that consists of
the curvature term with two attraction forces. This generalized
discrete elastica model is written as

Eelastica(x) = −λ1

∑
eij∈E∗

wijxixj−

λ2

∑
eij∈E∗

wij(1− xi)(1− xj) + µ
∑

eij∈E∗
w∗

ij |xi − xj |
(6)

whereλ1 andλ2 may be independently controlled to weight
the foreground or background attraction forces.

A key value of the attraction force is that it allows for an
optimization of the curvature energy even if the data (unary)
terms are removed. Specifically, the graph construction rep-
resents the negative attraction energy by adding an edgee12

and an edgee2T with positive weights. The addition of posi-
tive weights changes the sign of some of the negative weights
introduced by the curvature term. These sign changes affect
the optimization problem by strongly decreasing the number of
non submodular terms in the energy.

Summary: The segmentation problem is modeled as the
solution,x, which minimizesE(x) = Edata(x) + Eelastica.

The data term is typically instantiated by an intensity model
for the object (vessel). In our experiments, we employ a very
simple Chan-Vese data term [11] which models the foreground
and background each with a single intensity.

Edata(x) =
∑
vi∈V

xi(gi−µF )2 +
∑
vi∈V

(1−xi)(gi−µB)2, (7)

where µF represents the expected foreground intensity and
µB represents the background intensity and the elastica energy
Eelastica is defined in (6). We intentionally chose a simple
data model in order to highlight the contribution of the other
energy terms. In practice, the algorithm could be customized
for a specific application by replacing this data term with a data
term that models the appearance of the target vessel.

3. RESULTS

This section demonstrates that our method is capable of seg-
menting a vessel in 3D under challenging conditions. We will
present results for three challenging cases in three different
modalities (CTA, MRI and US) to demonstrate that:

1. The algorithm works across modalities with no changes.

2. The algorithm can use the curvature regularization and
global optimization to connect a vessel in which a signal
dropout appears to disconnect the vessel.

3. The algorithm is capable of separating two structures
having similar intensity.

We begin by addressing situations in which a signal dropout
in the image makes the vessel segmentation challenging. The
first case shows an example of a Computed Tomography An-
giogram (CTA) acquisition where the Right Coronary Artery
suffers a signal drop during descent. Using a simple data model
in which µF and µB in (7) are fixed based on the maximal
and minimal intensities in the input volumes, we see in Fig-
ure 2 that the curvature regularization is sufficient to connect
the vessel under these challenging conditions. A more extreme
example is given by Figure 3, which depicts a vessel in a 3D
ultrasound . In this case, acquisition resulted in a series of high-
intensity blobs which are separated by dark regions. However,
by using exactly the same weak intensity model as before (i.e.,
settingµF andµB the same as in the CT case) Figure 3 demon-
strates that our curvature regularization method is able retrieve
the vessel from this series of blobs.
The second major benefit of the algorithm is demonstrated by
the ability of the regularization method to separate two struc-
tures with a similar intensity, we placed a single seed on one
slice to mark a target vessel and a second seed to mark a back-
ground vessel. When seeds are incorporated into the segmenta-
tion, a foreground seedvi is set toxi = 1 while a background
seed would be set toxi = 0. When seeds are incorporated
into the segmentation, a data term is not necessary to avoid
the trivial minimum (i.e.,xi = 1,∀vi ∈ V). However, if the
data term is removed, then at least one of the attraction terms
must be included (λ1 > 0 or λ2 > 0) to allow the QBPO op-
timization procedure to find a solution forx. In this scenario,
no data term was used. Figure 4 shows an example of this
methodology applied to the separation of two blood vessels in
an MR acquisition. Needless to say that any data model (alone)
would have failed to perform this segmentation because both
vessels share the same intensity profile. Moreover, the most
common regularization in the literature, length regularization,



Fig. 2. Segmentation of the Right Coronary Artery in CTA. The first im-
age is a coronal slice of a CTA , the second image is zooming on the Right
Coronary Artery (RCA), the third image shows our result of the 3D segmenta-
tion for the given slice and the fourth image is an orthogonal view that depicts
the dropout in the signal. The second row consists of six consecutive slices of
the 3D volume cropped around the RCA, the third row exhibits the segmen-
tation result using the data fidelity only and the fourth row depicts the results
obtained by data and curvature regularization.

Fig. 3. Blood vessel segmentation in ultrasound.Color code: yellow -
vowels excluded form the segmentation domain by simple thresholds, Red-
Object of interest, Blue- Background. The top row shows a slice of the input
volume. The second image is a magnified portion of the first image, the third
and fourth images are the segmentation of the second image with data term
only and with data term and curvature, respectively. Second row: Six slices of
the input volume. Third row: Segmentation using data term only. Fourth row:
Segmentation using data term and curvature [µ=15,λ1 = 10, λ2 = 20].

would have yielded a cut around one the seeds. This shrinking
bias is eliminated by the curvature regularization. Another as-
pect that worth highlighting is the computational complexity of
our algorithm relative to the state-of-the art curvature optimiza-
tion schemes (that are mostly local). The most recent curvature
based segmentation approach [12] reported a time varying from
10 minutes to 3.5 hours for the segmentation of a 2D image,
without even guaranteeing optimality, while our approach per-
forms volumetric segmentation of a small volume in less than
a minute on a similar machine. For example, The segmentation
of an ultrasound data set of size 128× 128× 15 was performed
in 25 seconds.

4. CONCLUSION
The paper presented a generic curvature based vessel seg-
mentation model that extracts vessels across data acquisition
modalities without any modifications. Moreover, our model is

Fig. 4. Separation of vessels in MR. Top row shows a sample of the input
slices in the first image. Second and third images are a magnified portion of the
image and its segmentation, respectively. Second row: six consecutive input
slices with seeds. Third row: segmentation result.

globally optimized and does not require any initialization ma-
nipulation to provide the desired results. Curvature has been
shown to provide a good mechanism for segmenting vessels in
both theory [4] and practice [5, 6]. Here we showed how the
2D method for global optimization of curvature in [3] could be
extended to 3D with the addition of an attraction force (which
also allows us to employ seeds rather than a data term). This
global optimization approach avoids the difficulties of tradi-
tional vessel-following methods by considering the data as a
whole, which allows it to connect regions of a vessel which are
disjoint as a result of noise or pathology. Future work will
address more sophisticated data models and customization of
our method to specific problems in vessel segmentation.
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