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ABSTRACT formulation) can simply be extended to 3D but at a very high

Vascular diseases are among the most important health pré@Mmputational cost. Thin structures can also be segmented
lems. Vessel segmentation is a very critical task for stenY imPosing directional propagation information such as flux
sis measurement and simulation, diagnosis and treatment plRaSed approaches [2]. Although these approaches help elimi-
ning. However, vessel segmentation is much more challengifigte leakage and premature stopping, they can not bridge gaps
than blob-like object segmentation due to the thin elongatell the vessels. Additionally, the Euler-Lagrange optimization
anatomy of the blood vessels, which can easily appear disco€Mes, used to minimize active contour models, converge
nected in the acquired images due to noise and occlusion. §ASily to local minima.  Hence, we conclude thageneric
this paper, we present a generic vessel segmentation appro&%ﬁsel segmentation modgl should satlsf_y the_followmg _crlte-
that extracts the vessels by globally minimizing the surface cufi@: 1) Topology preservation The algorithm is respective
vature. The low curvature model enforces surface continui§f the vessel topology.e., preserve continuity of the surface
and prevents the formation of false positives (leakages) afgd prevent the formation of false negatives (holes) and false

false negatives (holes). We present two contributions: Firtositives (leakages). Zjlobal optimization: The algorithm

we introduce a generic 3D vessel segmentation model by pe&n e optimized globally to capture the global solution and

nalizing the boundary surface curvature. Second, we introdugiminate the need of tailored initialization. &eusability:

an attraction force as a generalization of the boundary lengli€ &lgorithm is reusable across different modalities.

in the elastica model, which guarantees a complete global so- N Order to provide such genericmodel, we build on the
lution and avoids shrinkage bias of length regularization. OJfcent work in [3] to propose a segmentation method which

results will illustrate that the approach works efficiently acros§énerates the vessel segmentation asgtbbal optimization
different acquisition modalities and for different applications. ©f & model that penalizes boundary curvature. The advantage
Index Terms— Segmentation, Vessel Segmentation, Conpf curvature optimization (shown theoretically by Mumford

binatorial Optimization, Curvature, Graph Methods [4]) is that, in the absence of reliable image data, it encourages
the segmentation of straight lines, which can be used to bridge
1. INTRODUCTION gaps. Additionally, leaking is suppressed because the leak

Vessel segmentation approaches vary widely according to tpaints often create unnecessary curvature, which is penalized.

prior information used in the segmentation, e.g.; appearangé"vature minimization has been proven in practice to provide

models, geometric models, and hybrid models (see [1] for e>g—00d vessel segmentation (€.g., [5, 6]), but previous work has

tended reviews). Despite this wide variety of vessel extractidh® been ablg to provide a gIo_baI optimization.
The algorithm developed in [3] was demonstrated to have

schemes, there is not a single model that can work efficient] " X ; . .
across modalities. Each vessel segmentation approach seé sab'l'ty to brld_ge regions of a vessel for wh|ch the 'mage
to be customized to handle a specific application in a particul format|0r_1 was incomplete as a_result of st_en03|s,_ occlusion,
modality. Here, we highlight the drawbacks associated withtc: In Fh's work, we extend this ’T‘e‘h°d In two important
the state-of-the-art vessel extraction schemes as reviewed vggys. .F'rSt' we exte_nd the formulation of the meth(_)d to 3D,
Lesageet al. [1] and propose a generic model that overcom&’ 'Ch IS necessary in order to aPp'y the methqd in several
these drawbacksCenterline based methodém at extracting imaging modahtles._ How_ezver, this 3D f_or_mulatlon ha? the
the vessel centerline without providing any surface informf;{QrObIem that the opt|m|zat!on had mor_e_dlfflculty producmg a
tion. Region growingextraction techniques extend the vessel9|0bal optimum (see Section 2) Additionally, when Iea_klng
by testing the neighbors of a given voxel against a predefiné\%ia concern, we want th? flexibility to deemphgsue the Inten-
inclusion criterion. They suffer from topological problems that'y model and also t.o'f|x backgroqnd seeds in confoundlng
result in holes (false negatives) and leakages (false positiveséét_mtures' In the o_r|g|nal_ formulatlt_)n of [3], the reduction
in the final segmentation. Active contourgepresent another OFinfluence for the_lnj[en§|ty model in favqr of seeds would
major category of vessel extraction schemes; Parametric actfig0 cause the optimization method to fail. Therefore, the

contours are proven to be efficient in 2D segmentation but tﬁéacond contribution of this work is to decompose the bound-

parameterizations get very complicated in 3D. On the oth y length term in.the elasticg mpdel [4] into fc.)reground.and
hand, the formulation of geometric active contours (level se ckgroundattraction forcesyielding a generalized elastica



G, J. k-1)
model. This decomposition allows independent control over a-1, j—1,%’\(i+1,j,k)

foreground and background voxels that yields a solution with ¢ g
the foreground voxels intact and without causing the shrinkage (isilk)
bias associated with length regularization. More importantly, it
enables the Quadratic Psuedo Boolean Optimization (QPBO) = -
and Quadratic Psuedo Boolean Optimization with Probing G-1.3. k3 (1. J+1.1
(QPBOP) to provide a complete global solution. Elimination
of unary terms enables the algorithm to segment, with aid of
seeds, objects the share the same intensity profile. Fig. 1. Six point neighborhood used in evaluating the 3D curvature.
that the formulation may also be applied to nonplanar graphs
2. METHODS . : L

by simply computing angles between the edges incident on a
We begin this section with a review of the 2D curvature optipgge, applying the decomposition in (3).
mization fr.ameworll< presented in [3]' pefore proceeding to our Extending this method to 3D follows the same approach.
3D extension of this approach, addition of an attraction forcgjce a 6-connected lattice, depicted in Figure 1, has a dual

&
(., k+1)

and details on the optimization. , _ complex [7], it is straightforward to interpret this curvature for-
The continuous formulation of Mumford's Elastica modelyjation in terms of penalizing the corners formed on the 3D
[4] is defined for curve as surface of the dual complex. However, boundary optimization
E(C) = br2)d b> 0. 1) ona §-connected lattice is WeII-kn_own to produce_ undesirable
(©) /c(a+ w)ds a @) gridding artifacts. Consequently, it would be desirable to ex-

wherex denotes the scalar curvature afirepresents the arc tend this method to apply to 3D lattices of higher-order con-
length element. Whea = 0, the model reduces to the integramectivity, such as a 26-connected lattice. Unfortunately, since
of the boundary squared curvatuiéC) = |, x2ds. the dual representation is not as clear in this case, it is quite
The use of combinatorial optimization by [3] to minimizedifficult to determine which pairs of edges should be penal-
the elastica model prompted the discrete formulation of the cuzed. Here, we performed this extension by penalizing 8 planar
vature on a graph. A grapi = {V, £} consists of a set of cliques (same cliques of the 8-connected lattice in 2D [3]) and
verticesv € V and a set of edges€ € C V x V. Anedge 16 cligues; eight to each of the upper and lower planes. The
incident to vertices; andv; is denoted:;;. In our formulation, added cliques represent a higher resolution partitioning of the
each voxel is identified with a node;. A weighted graph is Unit sphere which should yield a smoother surface.
a graph in which every edge; is assigned a weight;;. An Optimization: In the previous sections, curvature regular-
edge cut is a set of edges that separates the graph into two s@g{jon was formulated into the problem of finding a minimum
S C V andS, which may be represented by a binary indicatogut on a graph in which some of the edge weights were neg-
vectorz, such thatz; = 1if v; € S and 0, otherwise. The ative. Unfortunately, the negative edge weights introduced by
cost of the cut represented by anys given by the third term of (3) cause the min-cut problem to be nonsub-
Cut(z) = Z wis|@s — a;]. ) modular [8],i.e., straightforward max-flow/min-cut algorithms
- will not yield a minimum cut. However, it was shown in
In [3], we have introduced the discrete representation d#l that the Quadratic Pseudo Boolean Optimization (QPBO)
curvature on the primal graph. In this formulation, if two edge@nd Quadratic Pseudo Boolean Optimization with Probing
incident on a node;, ; andeik; are cut then the cut is penal- (QPBOP)[8] frequently offered a solution to the optimization

ized with valuew;;;, = ——2——, wherea is the angle problem that is complete and optimal.
min([lei; | lle: 1) In our extension of this work to vessel segmentation, we

betweep the edges. Th|§ cut penalty is then exactly decorgﬁcounter two difficulties with this optimization approach. 1)
posed into three edge weights . ) i
In our experience the structure of the negative weights encoun-
B, ;2 = Wijlri — x| +wik|z; — k] —wjk|z; — k|, (3)  tered in the 3D construction more often leads to incomplete
wherew;; = wy, = wjp = %ww‘k- Despite the negative solutions from QBPO. 2) Intensity models are often unable to
weights, it was shown in [3] that QBPOP was able to find distinguish vessels from other proximal structures (e.g., two
minimum cut in most circumstances. Notice that although theuching vessels). Therefore, in these circumstances we want
curvature clique was designed to penalize the cut of both edgibe ability to modify the construction to remove the intensity
e;; ande;;,, the decomposition to pairwise interactions add amodel and instead supply a seed in the confounding structure.
edgee;;, with negative weight. We denote the set of effectivddnfortunately, without an intensity model (unary term), then
edges with nonzero weights 88 D £. QBPO will be completely unable to label the voxels. To re-
Extension to 3D The graph-based formulation presentedolve this problem, it is possible to add the length term of the
in [3] and reviewed above associates cut costs with the cunalastica to decrease the non submodularity of the energy func-
ture for the boundary on a dual graph. Unfortunately, manion. However, it is well-known that the length regularization
graphs of interest in 2D (e.g., an 8-connected lattice) are nommroduces a shrinkage bias so we decompose the length term
planar and therefore have no dual. However, in [3] it was showinto foreground and backgrouradtraction energiesn order to



produce a complete labeling of the vessel and control the foref ¢, (z) = Z i(gi—pr)*+ Z 1—x:)(gi —pp)?, (7)
ground and background independently to avoid shrinkage. v EV

Attraction Energy: The second term in the elastica energyvhere p.p represents the expected foreground intensity and
of (1) is the boundary length term. The boundary length teris represents the background intensity and the elastica energy
corresponds to the minimum cut term in graph-based metflastica iS defined in (6). We intentionally chose a simple
ods, which identifies the boundary length with a cut using edgéata model in order to highlight the contribution of the other
weights which may be weighted to reflect Euclidean bounda§nergy terms. In practice, the algorithm could be customized
length [9]. Therefore, combining our formulation of discretdor @ specific application by replacing this data term with a data
curvature with boundary length, we obtain a discrete formulderm that models the appearance of the target vessel.
tion of the elastica model as: 3. RESULTS

-\ Z wijlw; — ;| + p Z Sl — ), (@) This _section demgnstrates that our m(_athod is _cgpable of seg-
gy ey el menting a vessel in 3D under challenging conditions. We will

wherew;; could be set tav;; = 1 or to reflect the Euclidean present results for three challenging cases in three different
boundary length (as in [9]) and the weights; are the cur- modalities (CTA, MRI and US) to demonstrate that:
vature penalties in (3). We may generalize the elastica model 1. The algorithm works across modalities with no changes.
by decomposing the length term intdaxeground attraction
force and abackground attraction force. The minimization
of the length term expressed By, .. wi;|z; — ;| is equiv-
alent to the maximization of the function

2. The algorithm can use the curvature regularization and
global optimization to connect a vessel in which a signal
dropout appears to disconnect the vessel.

3. The algorithm is capable of separating two structures

Z wi; (wixy + (1 — 23)(1— 2;)) . (5) having similar intensity.
p=r:E We begin by addressing situations in which a signal dropout

Foreground and background attraction forces are analogousfidhe image makes the vessel segmentation challenging. The

inflation and deflatiorballoon forcespresented in [10], with first case shows an example of a Computed Tomography An-

the difference that the attraction forces operate on pairs of vogiogram (CTA) acquisition where the Right Coronary Artery
els. While an inflation force encourages every individual voxeguffers a signal drop during descent. Using a simple data model
to be labeled foreground, a foreground attraction force encouf Which ur and i in (7) are fixed based on the maximal
ages attraction between pairs of voxels by enforcing neighbctnd minimal intensities in the input volumes, we see in Fig-
ing voxels to have the same foreground label. Consequenﬂ,y,e 2 that the curvature regularization is sufficient to connect
we may consider a generalized elastica model that consiststBe vessel under these challenging conditions. A more extreme
the curvature term with two attraction forces. This generalizegample is given by Figure 3, which depicts a vessel in a 3D

discrete elastica model is written as ultrasound . In this case, acquisition resulted in a series of high-
intensity blobs which are separated by dark regions. However,
FEelastica(T) = =1 Z Wi T3 %5~ by using exactly the same weak intensity model as before (i.e.,
eijEE* ©6) settingur andup the same as in the CT case) Figure 3 demon-
A wii(1—a)(1 —2;) + o strates that our cu_rvatu_re regularization method is able retrieve
? 62625 i i 2 . EE:E wijlei the vessel from this series of blobs.
17 (¥l

The second major benefit of the algorithm is demonstrated by
where\; and A\, may be independently controlled to weightthe ability of the regularization method to separate two struc-
the foreground or background attraction forces. tures with a similar intensity, we placed a single seed on one

A key value of the attraction force is that it allows for anslice to mark a target vessel and a second seed to mark a back-
optimization of the curvature energy even if the data (unanground vessel. When seeds are incorporated into the segmenta-
terms are removed. Specifically, the graph construction repien, a foreground seed is set tox; = 1 while a background
resents the negative attraction energy by adding an edge seed would be set to; = 0. When seeds are incorporated
and an edge>7 with positive weights. The addition of posi- into the segmentation, a data term is not necessary to avoid
tive weights changes the sign of some of the negative weightse trivial minimum (i.e..x; = 1,Vv; € V). However, if the
introduced by the curvature term. These sign changes affatdta term is removed, then at least one of the attraction terms
the optimization problem by strongly decreasing the number ofiust be includedX; > 0 or A, > 0) to allow the QBPO op-

non submodular terms in the energy. timization procedure to find a solution far In this scenario,
Summary: The segmentation problem is modeled as thao data term was used. Figure 4 shows an example of this
solution,z, which minimizesE(x) = Eqata(x) + Eelastica- methodology applied to the separation of two blood vessels in

The data term is typically instantiated by an intensity modedn MR acquisition. Needless to say that any data model (alone)
for the object (vessel). In our experiments, we employ a vemyould have failed to perform this segmentation because both
simple Chan-Vese data term [11] which models the foregrounessels share the same intensity profile. Moreover, the most
and background each with a single intensity. common regularization in the literature, length regularization,
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------ Fig. 4. Separation of vessels in MRTop row shows a sample of the input
slices in the firstimage. Second and third images are a magnified portion of the

Fig. 2. Segmentation of the Right Coronary Artery in CTA. The firstim- di . ivel d L R
age is a coronal slice of a CTA , the second image is zooming on the Rig rFage and its segmentation, respectively. Second row: six consecutive input
! slices with seeds. Third row: segmentation result.

Coronary Artery (RCA), the third image shows our result of the 3D segmenta-

tion for the given slice and the fourth image is an orthogonal view that depica . . s )
the dropout in the signal. The second row consists of six consecutive slices !pbally optlmlzed and does not require any initialization ma

the 3D volume cropped around the RCA, the third row exhibits the segmeRlipulation to provide the desired results. Curvature has been
tation result using the data fidelity only and the fourth row depicts the resulshown to provide a good mechanism for segmenting vessels in

obtained by data and curvature regularization. both theory [4] and practice [5, 6]. Here we showed how the
2D method for global optimization of curvature in [3] could be
extended to 3D with the addition of an attraction force (which
also allows us to employ seeds rather than a data term). This
global optimization approach avoids the difficulties of tradi-
tional vessel-following methods by considering the data as a
whole, which allows it to connect regions of a vessel which are
disjoint as a result of noise or pathology.  Future work will
address more sophisticated data models and customization of
our method to specific problems in vessel segmentation.

Fig. 3. Blood vessel segmentation in ultrasound.Color code: yellow -
vowels excluded form the segmentation domain by simple thresholds, Rec[—z]
Object of interest, Blue- Background. The top row shows a slice of the input
volume. The second image is a magnified portion of the first image, the third3]
and fourth images are the segmentation of the second image with data term
only and with data term and curvature, respectively. Second row: Six slices 0f4]
the input volume. Third row: Segmentation using data term only. Fourth row:
Segmentation using data term and curvatwel, \; = 10, A2 = 20].
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