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Abstract

Two challenges in computer vision are to accommodate
noisy data and missing data. Many problems in computer
vision, such as segmentation, filtering, stereo, reconstruc-
tion, inpainting and optical flow seek solutions that match
the data while satisfying an additional regularization, such
as total variation or boundary length. A regularization
which has received less attention is to minimize the curva-
ture of the solution. One reason why this regularization has
received less attention is due to the difficulty in finding an
optimal solution to this image model, since many existing
methods are complicated, slow and/or provide a suboptimal
solution. Following the recent progress of Schoenemann
et al. [28], we provide a simple formulation of curvature
regularization which admits a fast optimization which gives
globally optimal solutions in practice. We demonstrate the
effectiveness of this method by applying this curvature reg-
ularization to image segmentation.

1. Introduction

Recent progress in continuous and discrete optimization
techniques has yielded techniques for finding optimal or
nearly optimal solutions for several of the classical models
in computer vision. These models include boundary length
regularization, total variation and the Mumford-Shah func-
tional. An important consequence of this success in op-
timization is that any inadequacies of the models can no
longer plausibly be attributed to suboptimal solutions but
must rather lie with inadequacies of the models themselves.
One inadequacy observed in many of the existing models
is a failure for the models to enforce continuity of an object
boundary in the presence of noise, occlusion or missing data
[29]. Curve continuity is a feature of the Gestalt description
of human visual perception and is therefore likely to be an
important feature of any successful computer vision model.
This lack of curve continuity in existing models has a nega-
tive effect on the use of these models in the context of image
segmentation, inpainting and filtering [29].
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One common proposal for enforcing curve continuity is
to use a regularization term that penalizes the curvature of a
solution. Mumford described the minimum curvature regu-
larization by the Euler elastica model [22] which he showed
to embody the Bayes optimal solution of a model of curve
continuity. Although Mumford and other authors have con-
vincingly justified the elastica model for enforcing curve
continuity, the optimization of the elastica regularization
term has proven difficult, leading to algorithms that pro-
vide suboptimal solutions, require implementation param-
eters and are generally computationally inefficient.

A feature of many optimization successes in recent years
is the use of combinatorial optimization techniques to solve
a discretized form of models which are written using clas-
sical continuous mathematics. This discretization approach
has also been applied to the elastica model. Bruckstein et
al. [7] gave a discretized form of the elastica model which
described the object boundary by a polygon for which the
curvature could be estimated using the exterior angles of
the successive line segments of the polygon. The outstand-
ing contribution of Schoenemann et al. [28] showed how
the Bruckstein discretization could be incorporated into a
combinatorial optimization framework by viewing the dual
graph as a space of polygonal boundaries over which the
optimization could be performed. However, this parameter-
ization of the Bruckstein discretization required a relaxation
of the indicator function of the boundary segments, often
leading to a suboptimal solution for the curvature. Although
this solution for the curvature regularizer was suboptimal, it
still had strong advantages over previous optimization tech-
niques in the sense that the optimization was parameter-free
and did not depend on initialization.

Our work builds directly on the Bruckstein er al. and
Schoenemann et al. formalism to produce a method for op-
timizing curvature. As with Schoenemann et al., we adopt
the Bruckstein discretization of the elastica model, but in-
stead parameterize the space of curves based on the primal
graph in which each edge cut in the primal graph represents
a normal vector of the curve in the dual graph. By refor-
mulating Bruckstein’s discretization on the angles between



edges of the primal graph, we give a formulation of the elas-
tica model in which the value of each graph cut corresponds
to the sum of squared curvature of the cut boundary.

Although this formulation equates graph cuts with
boundary curvature, a difficulty of the formulation is the
presence of nonsubmodular terms in the graph cut (i.e., neg-
ative edge weights). Fortunately, the optimization of graph
cuts with nonsubmodular terms has been a focus of recent
activity in computer vision and has led to a powerful set
of methods which are provably optimal [18, 25]. Specifi-
cally, the Quadratic Pseudo-Boolean Optimization (QPBO)
method [2, 3, 18] has been shown to provide an optimal so-
lution for some variables and to leave other variables with
unknown solution. However, by using QPBO iteratively
(with probing) it was shown that a drastic reduction of the
number of unknown variables is feasible [25]. Furthermore,
the QPBO method with probing (QPBOP) preserves global
optimality of the solution, although some problems yield a
fast convergence and other problems yield a slow conver-
gence. Empirically, our discrete formulation of the elastica
model always yields a fast convergence using QPBOP and
in our experiments all (or nearly all) of the variables are
labeled, meaning that the solution we obtain is globally op-
timal.

1.1. Previous work

The elastica model has previously been employed by
several research groups for the perceptual completion and
image inpainting problems [10, 29, 13, 20], in which the
model was optimized in a PDE framework. These imple-
mentations were often difficult or computationally ineffi-
cient and an appropriate initialization is required. Curvature
regularization has also appeared in methods for perceptual
grouping and capturing illusory contours in which curvature
regularization was demonstrated to provide results closer to
human perception than any other model [31, 24].

Curvature regularization has appeared in several guises
in the computer vision literature, of which Mumford’s elas-
tica model is just one example. Other approaches use cycle
ratios to provide curvature dependent image segmentation
[27, 17]. Schoenemann et al. presented globally optimal
image segmentation by minimizing the ratio of the flux over
the weighted sum of length and curvature of the object of in-
terest. However, the memory requirements and the compu-
tational time of this approach makes it impractical for many
vision applications.

Several groups have also applied advanced optimization
techniques to solve traditional models in computer vision.
For example, the total variation model [26] has been well
optimized using both continuous [8, 1, 30] and discrete
methods [11]. Similarly, progress in the Mumford-Shah
model has been also appeared from improved optimization
of the continuous [6, 14] and discrete forms [12, 15]. The

QPBO optimization that we depend on in this work was de-
veloped originally by Boros and Hammer [2, 3], but later
brought to computer vision and further extended by Rother
and Kolmogorov [18, 25].

2. Methods

We begin this section by reviewing the elastica model
and the Bruckstein discretization. We then demonstrate how
to formulate this model on the primal graph, which leads to
an identification of cut cost with boundary curvature. The
optimization of this model is then discussed.

Mumford’s elastica curve model is defined as [22]:

EC) = /(a—&—lmQ)ds a,b >0, (1)
c

where x denotes scalar curvature and ds represents the arc
length element. When a = 0 (the boundary length is ig-
nored), the elastica model reduces to the integral of the
boundary squared curvature

e(C) :/zm?ds b>0. )
C

Bruckstein et al. [7] introduced a discrete formulation
for the curvature by measuring the curvature of a polygon
and showing that this discretization approaches the contin-
uous formulation as the length of each line segment ap-
proaches zero. Given a boundary (polygonal curve) con-
sisting of n segments Iy, la, ..., [, of length Iy, lo, ... I,
respectively, Bruckstein ef al. estimated the integral curva-
ture (raised to a power p) over the boundary as [7]

p
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where ¢; ;11 is the exterior angle formed by the intersec-

tion of [/; and lz_ﬂ> as depicted in Figure 1. Notice that
the Bruckstein’s formula is general for any exponent p, but
throughout this paper, we will use p = 2 to match the elas-
tica model as defined by Mumford.

Our strategy for employing Bruckstein’s discretization
consists of two steps. In the first step, we replace Bruck-
stein’s polygonal line segments by the edges cut in a graph
representing the image pixels. In the second step we map
the space of polygons to edge cuts such that the measure of
curvature energy for each polygon, as measured by Bruck-
stein’s formula (3), is equal to the cost of a cut. In order to
present our formulation of Bruckstein’s discrete elastica for-
mulation, we introduce a graph specific notation. A graph
G = {V,&} consists of a set of vertices v € V and a set
of edges e € £ C V x V. An edge incident to vertices
v; and v; is denoted e;;. In our formulation, each pixel is
identified with a node, v;. A weighted graph is a graph in
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Figure 1. The exterior angle ¢ formed by the adjacent line seg-
ments in a polygonal curve and the interior angle o formed by the
intersection of the normals to the line segments. Note that ¢ = «.
which every edge e;; is assigned a weight w;;. An edge cut
is any collection of edges that separates the graph into two
sets, S C V and S, which may be represented by a binary
indicator vector x,

1 ifv; €8,
- mov; € (4)
0 else.

The cost of the cut represented by any x is defined as
Cut(z) = Zwij|xi — zjl. %)

To formulate the curvatute optimization problem on the
primal graph, we first adopt the Schoenemann et al. formal-
ism of the boundary polygonal as existing on the dual graph.
In this case, exterior angles of the line segments (edges)
of the dual graph correspond to the interior angles (cv; ;+1)
formed by the intersection of the dual boundary edges with
the primal cut edges, as shown in Figure 1. To have a well-
defined dual, we begin by considering our pixel lattice as
a 4-connected graph, in which the dual lattice is also a 4-
connected graph [28]. It is obvious that ¢; ;41 = ;41
and, for image lattices, it is straightforward to show that
Aujuzuy and Avjvvy are similar. Hence we may adapt
Bruckstein’s formula in (3) to our primal formulation by
penalizing the edges with angle oo = Zv;v;v;, by the weight
w; 1 given by

oP
S min([ o T DT

(6)

Every exterior angle that contributes to the calculation of
the integral curvature proposed by Bruckstein et al. has a
corresponding interior angle in which edges should be cut
to partition the domain in two disjoint sets. This concept in
illustrated in Figure 2.

When the successive line segments of every polygon in
the dual graph are either parallel to each other or dual to
edges incident on a single node, v;, then the angle between
two dual line segments can be represented as a function of
three nodes in the primal graph, v;, v; and vy. Specifically,
we can write the contribution of the angle of two successive
line segments in the dual graph in terms of the indicator
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Figure 2. The correspondence between calculating the curvature
using exterior angles between the boundary line segments and us-
ing the interior angles between the cut edges. Blue and red vertices
are the vertices of the primal graph. Black vertices are the vertices
of the dual graph.

function x as

Ty | Ty | Tg w

0|01 O 0

0] 0 1 0

0 1 0 0

0 1 1 Wijk (7)
1 0 0 Wijk

10 1 0

1 1 0 0

1 1 1 0

Since this formulation for the curvature is described in
terms of three variables, we define a 3-clique with these
penalties as the curvature cligue. Remarkably, the curva-
ture clique can be decomposed into three 2-cliques (edges)
having weights

1
Wij = 5Wijk»
1
Wik = 5Wijk; ®)
1
Wik = —§wijk.

Therefore

Bz, x5, v1) = wij|vi — 2|+ wik |0 — g |+ wjp |z — 28],

©)
where E(x;,x;, ) represents the energy defined in (7).
Even though the curvature clique was designed to penalize
the cut of both edges e;; and e;i, the decomposition in (8)
effectively adds an edge e; having negative weight. We
denote this new set of effective edges which have nonzero
weights as £*. Note that £ C £* where £.

Therefore, the weights for every curvature clique may
be computed for each successive pair of edges incident on
every node (taken clockwise). If each curvature clique is
further decomposed into pairwise edge weights via (8), then
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Curvature calculated using [21] 340

404 414 630

Cut cost using our formulation 305.9577

365.1754 381.2135 592.1763

Figure 3. A comparison of our cut formulation of Bruckstein’s curvature discretization with an independent estimation of curvature given
by Meyer [21] which is widely used in computer graphics. For each shape, we used Meyer’s formula to calculate the integral of squared
boundary curvature and compared it with the cost of the cut we used to calculate the integral of the squared boundary curvature. In each
case, our estimates of boundary curvature closely match each other, demonstrating that Bruckstein’s formulation of polygonal curvature
(and our cut-based reformulation) is very similar to a different method for calculating boundary curvature proposed by Meyer.

the cost of the cut in (5) equals the sum of the curvature
weights computed for angles in the dual polygon, as given
by Bruckstein et al. In this sense, our formulation represents
the primal form of the Schoenemann et. al formalism.

As an example of the correctness of our formulation,
we compared the cost of the cut in our formulation (i.e.,
estimated curvature of the boundary) with an independent
method for calculating the integral of the curvature of the
boundary of an object given by Meyer [21] and widely used
in computer graphics. Meyer provided a simple discrete ap-
proximation for the integral mean curvature at a particular
vertex v; as

1
3 D (ot vy +cot Bij)lvivyl, (10)

JEN1(vs)

where N (v;) is the set of 1-ring neighbor vertices of vertex
i, and v;; and (;; are the two angles opposite to the edge
v;v; in the two triangles sharing this edge and ||v;v;|| is the
Euclidean length of the line segment connecting v; and v;.
We simulated several objects by combining circular, el-
liptic, parabolic and hyperbolic functions. For each object,
we have calculated the integral curvature on the bound-
ary of these objects using Meyer’s formula (10) and com-
pared this calculation with the cost of the cut using the pro-
posed graph construction. Figure 3 depicts the simulated
objects that we used in the validation, Meyer’s calculation
of the integral squared curvature of the object boundary and
our calculation of the integral of the squared curvature ob-
tained by the cut cost. This example demonstrates that our
cut formulation of Bruckstein’s discretization of curvature
closely matches an independent measure of boundary cur-
vature commonly used in the computer graphics literature.

2.1. Optimization

In our primal formulation of Bruckstein’s curvature dis-
cretization, we provided a graph weighting such that the in-
tegral of squared curvature of the boundary curve equals

the cost of the cut. Therefore, in order to find the boundary
with minimal curvature (subject to some constraints and/or
data observation) it is necessary to find the minimum cut in
our weighted graph. Efficient algorithms exist for finding
a minimum cut when the edge weights have nonnegative
values. However, the presence of negative weights causes
our minimum cut problem to be nonsubmodular [19] which
means that a straightforward max-flow computation will not
yield a minimum cut.

Recently, minimizing nonsubmodular functions has been
the center of attention of several research groups [18, 3, 25].
Progress in the optimization of nonsubmodular functions by
Boros and Hammer led to the development of a technique
called Quadratic Pseudo Boolean Optimization (QPBO)
[16, 2]. Optimization with QPBO was later brought to com-
puter vision by Kolmogorov and Rother [18] who demon-
strated applications in texture restoration and image stitch-
ing. The QPBO technique has the amazing ability to pro-
vide a partial labeling of the variables which is optimal for
all labeled variables. The output of QPBO is

1 if v; €8,
z; =40 if v, €8, (11)
0 otherwise.

Recall that S represents the set of nodes for which we are
computing the curvature of the boundary.

The utility of QPBO is determined by the number of
vertices that the approach fails to label. Experimentally,
it has been verified [25] that if the number of non sub-
modular terms in the energy function is large, the output
of QPBO contains many unlabeled vertices (Rother et al.
[25] reported that up to 99.9% of variables could be un-
determined). A promising approach to resolve this prob-
lem is the extended roof duality presented in [3]. Rother et
al. [25] also reviewed the extended roof duality approach,
first introduced by Boros et al. [3], and presented a more
efficient implementation than Boros’. Their work extends



QPBO by a probing operation that aims at calculating the
global minimum for the vertices that have not been assigned
a label by QPBO. The approach is referred to as QPBOP
(Quadratic Pseudo Boolean Optimization with Probing). By
applying QPBO multiple times to our energy function, the
QPBOP eventually labels almost all variables, providing a
globally optimal solution for the energy minimum. When
QPBOP did fail to label some pixels, we found that these
pixels were isolated in a few small connected components.
In these situations, we adopted the method of assigning to
each connected component the label that best lowers the
total energy. Therefore, we are able to apply the QPBOP
method to effectively find a minimum cut (minimum curva-
ture boundary) even though our construction contains nega-
tive weights. The only potential concern with this approach
is the number of iterations required for QPBOP to converge
(computation time). In practice, we find that QPBOP con-
verges quickly for our problem.

LD

Figure 4. Comparison of a segmentation obtained by length reg-
ularization and curvature regularization. (a) An angiogram, (b)
Segmentation obtained by data alone, (c) Segmentation obtained
by data and length regularization, (d) Segmentation obtained by
data and curvature regularization. The second, third and fourth
rows are detailed views of highlighted parts of the image. Results
were obtained with . = 1000.

3. Image Segmentation with Curvature Regu-
larity

Image segmentation is an important application that can
benefit form curvature regularity. Schoenemann er al. [28]
showed that curvature regularization can particularly en-
hance the segmentation of elongated or thin structures. The
most natural method for applying a curvature regularization
is by including a region-based data model. Specifically, a
region-based image segmentation model consists of a data
term which penalizes the smoothness of the data points and
a regularizer that enforces boundary smoothness. The most
common boundary regularizer is to minimize the boundary
length [23, 9, 1, 30]. For simplicity, we adopt the piecewise
constant data model [23, 9].

Given a 2D image with image values associated with
each pixel (node), g : V — R, our goal in a segmentation
application is to find the boundary, represented by indica-
tor function x, that subdivides the image into a foreground
(the object of interest) and a background. This goal can be
achieved by minimizing the discrete Mumford-Shah-Euler
segmentation energy given by

Fuse (37) = Edata(x) + pEeurvature (33)
2 2
= Z 2 (9i — pr)” + Z (I =) (9 — pp)
v, €V v; €V
+u Z wijlr; —xj], (12)
ei;€EE

where p is a coefficient that control the relative importance
of each term. The values of r and pp represent the mean
intensity values inside and outside the set S represented by
z. The first two terms represent the Mumford-Shah energy
functional [23], which reflect the data smoothness by min-
imizing the intensity variations in each region. The third
term imposes a regularization of the boundary by minimiz-
ing the integral curvature along the boundary. Note that the
data term can take many other forms (see [4, 28] for more
possibilities) and boundary length may additionally incor-
porated into our optimization by adding the edge weights
formulated to encode Euclidean boundary length presented
in [5]. In fact, adding the positive edge weights that en-
code boundary length serve to make the optimization eas-
ier by reducing the number of edges with negative weight.
Finally, interactively placed foreground/background seeds
can easily be incorporated into our optimization by treating
foreground seeds as source nodes and background seeds as
sink nodes, in exactly the same way as traditional graph cuts

[4].
3.1. Summary of the algorithm

The segmentation algorithm can be summarized as fol-
lows:



Figure 5. Effect of edge connectivity. Top row: Input image, segmentation by data alone, segmentation with 4-connected curvature
regularization, segmentation with 8-connected curvature regularization. Bottom rows: Detailed views of the segmentation. Results were

obtained with p = 500.

1. For every node, compute the weights of the curvature
clique for each successive pair of edges incident on
the node (taken clockwise). Each curvature clique is
further decomposed into pairwise edge weights via (8)
to form the new set of edges £*.

2. Apply Quadratic Pseudo Boolean Optimization with
Probing [25] to find the solution x producing an opti-
mum of (12). The min cut partitions the graph into two
components S and S.

4. Experimental Results

This section presents the experimental results for the im-
age segmentation. Following Schoenemann et al. [28], we
fixed the values of y and p 5 in equation (12) based on the
minimal and maximal intensities in the image. All of the
experiments were performed on a 2.8 GHz Intel machine
with 1GB RAM. In all of our experiments, we endeavored
to choose parameters to display the best segmentations we
could obtain by the data term alone or the segmentation ob-
tained by the data term regularized with boundary length.

We begin by demonstrating the usefulness of curvature
regularization by examining the segmentation of an angiog-
raphy image in which the blood vessels have weak contrast
at locations. Figure 4 displays the segmentation obtained
by data modeling only, the traditional boundary length reg-
ularization and the curvature regularization. The segmenta-
tion obtained by data modeling alone leads to a fragmented,
disconnected segmentation. In this example, the boundary
length regularization has the effect of removing small pieces

of vessel or shortcutting torturous regions of the vessel in
an effort reduce boundary length. In contrast, the curvature
regularization connects small, weak, co-aligned fragments
and avoids shortcutting the boundary.

A common feature of graph-based algorithms formu-
lated on a 4-connected graph is a bias toward axis-aligned
structures. However, the introduction of a larger neighbor-
hood connectivity usually has the effect of ameliorating this
bias [5, 28]. Unfortunately, the 8-connected lattice is non-
planar. Therefore, there exists no dual graph which may be
equated to Bruckstein’s formulation (and [28]). However,
for any lattice, we can still order the edges incident to a par-
ticular node and use (3) to penalize cutting these edge pairs.
We can then use the pairwise decomposition of the result-
ing curvature clique in (8) to establish a pairwise-weighted
graph that serves as the curvature regularization. In this
manner, we applied our formulation of curvature in terms
of the angles of edge pairs around a node to lattices with 8-
connectivity. Empirically, the 8-connected lattice improves
the metrication artifacts sometimes observed when using a
4-connected construction. Meanwhile, an 8-connected con-
struction allows us to capture diagonal curve continuity for
cases in which the 4-connected lattice has difficulty. Figure
5 illustrates this effect.

Figures 6 shows a collection of results that illustrate
the ability of curvature regularization to complete co-linear
structures even in the presence of substantial noise or data
weakness. Two examples are also given of interactive seg-
mentation with seeds using curvature regularization. The
segmentation of blood vessels in the presence of steno-



sis (occlusion) is a major difficulty in medical imaging for
which curvature regularization can be very successful. In
our experiments, QPBO succeeded to label all pixels when
an 8-connected lattice was used. In the experiments us-
ing a 4-connected lattice, there were occasions when some
small connected components were unlabeled and we there-
fore adopted the procedure of labeling each connected com-
ponent with the label that best lowers the total energy. Gen-
erally, all of our images took less than 10 seconds to pro-
duce a segmentation with curvature regularization. This
CPU time, to the best of our knowledge, is faster than any
time recorded for curvature based segmentation in the lit-
erature. For example, the Schoenemann et al. paper [28]
reported time varying from 10 minutes to 3.5 hours for the
segmentation of a single image. For example, Schoene-
mann et al. segmented the fly image shown in Figure 6 in
3.5 hours while our formulation allowed us to segment the
same image in 6.22 seconds, an improvement by more than
four orders of magnitude.

5. Conclusion

Mumford promoted the elastica image model as
paradigm for obtaining curve continuity. Later work with
this model in image inpainting and segmentation demon-
strated that the elastica model does promote solutions that
exhibit curve continuity. However, traditional work on the
elastica model produced PDE-based solutions that could be
difficult to implement, slow and dependent on initializa-
tion. The recent work of Schoenemann et al. [28] broke
the initialization dependence by using a combinatorial op-
timization of the discretization given by Bruckstein et al.
[7]. However, the solution provided by Schoenemann et al.
[28] was computationally intensive and often did not pro-
vide a global optimum of the desired objective. We built on
all of this work to give a fast solution to the elastica model
that far exceeds the computational requirements of previous
approaches by employing recent advances in combinatorial
optimization [18, 25]. Empirically, QPBO provides a so-
lution which labels all (or almost all) pixels, providing a
globally optimal solution to the elastica model.

The elastica model has held promise since Mumford in-
troduced it to segment challenging objects by making use
of curve continuity. Our optimization of this objective has
demonstrated that the model does in fact allow us to meet
these segmentation challenges. Future work will focus on
a 3D formulation and the application of our regularization
method to other problems in computer vision.
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