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Abstract. Bayesian inference provides a powerful framework to optimally inte-
grate statistically learned prior knowledge into numerous computer vision algo-
rithms. While the Bayesian approach has been successfully applied in the Markov
random field literature, the resulting combinatorial optimization problems have
been commonly treated with rather inefficient and inexact general purpose opti-
mization methods such as Simulated Annealing. An efficient method to compute
the global optima of certain classes of cost functions defined on binary-valued
variables is given by graph min-cuts. In this paper, we propose to reconsider the
problem of statistical learning for Bayesian inference in the context of efficient
optimization schemes. Specifically, we address the question: Which prior infor-
mation may be learned while retaining the ability to apply Graph Cut optimiza-
tion? We provide a framework to learn and impose prior knowledge on the distri-
bution of pairs and triplets of labels. As an illustration, we demonstrate that one
can optimally restore binary textures from very noisy images with runtimes on
the order of a second while imposing hundreds of statistically learned constraints
per pixel.

1 Introduction

In his 1948 paper, Shannon considered the formation of text as a stochastic process.
He suggested to learn the probabilities governing this process by computing the his-
tograms of occurrences and co-occurrences of letters from a sample text. Subsequently
he validated the accuracy of the generated model by sampling new texts from the es-
timated stochastic model. Not surprisingly, the successive integration of higher order
terms (occurrence of letter triplets rather than pairs etc.) provides for the emergence of
increasingly familiar or meaningful structures in the synthesized text.

In the context of images, similar approaches have been proposed in the Markov ran-
dom field literature. We refer to [24] for an excellent introduction. Going back at least
as far as Abend’s work [1], Markov random fields have endured a sustained interest in
the vision community. Besag [3] applied them in the context of binary image restora-
tion and Derin [8] and Gimelfarb and coworkers [12] analyzed texture in the context of
a Markov random field using learned priors based on gray level co-occurrences. Work
has continued through new applications such as texture segmentation [20] or through
extension of the basic model, for example by considering higher-order cliques [23].



There are two major computational challenges arising in the application of Markov
random fields for Bayesian inference. Firstly, one needs to devise methods to efficiently
learn priors given a set of representative sample data. Secondly, upon imposing the
learned prior, the inference problem requires global optimization of a given cost func-
tion. In this work, we will focus on binary-valued cost functions

E : {0, 1}n → R (1)

over a large set of variables {x1, . . . , xn}. The optimization of such functions has a long
tradition, going back to the work of Ising on ferromagnetism [15]. Numerous methods
have been proposed to tackle these combinatorial optimization problems. Geman and
Geman [11] showed that the method of Simulated Annealing [16, 21] is guaranteed to
find the global optimum of a given function. Alternative continuation methods such as
Graduated Non-Convexity [4] have been proposed as well. Unfortunately, general pur-
pose optimization methods such as Simulated Annealing require exponential runtime
and can be quite slow for the number of nodes considered in most realistic applica-
tions.3 In contrast, deterministic or approximation algorithms are not guaranteed to find
a global optimum. The key challenge addressed in the present paper is therefore to de-
vise methods to efficiently impose statistically learned knowledge in such combinatorial
optimization problems.

The optimization of cost functions of the form (1) is in general an NP-hard combi-
natorial problem. The pioneering works of Picard and Ratliff [22] and of Greig et al.
[13] showed that certain functions E of binary-valued variables can be represented by
a directed graph G(V, E) with nonnegative edge weights and two nodes s and t, called
source and sink, such that the optimum of the function E corresponds to the minimal
s-t-cut of the respective graph. According to the theorem of Ford and Fulkerson [9],
the computation of the minimal cut is equivalent to computing the maximum flow from
the source to the sink. Several algorithms exist to compute this flow in polynomial time
(see e.g. [5]). For applications of Graph Cuts to non-binary cases, we refer to [6, 14]. To
restate, for certain combinatorial optimization problems, max-flow/min-cut algorithms
provide both a fast and an exact solution.

Recently, theoretical efforts have been made to determine which classes of functions
can be optimized by Graph Cuts. Ishikawa [14] provided constructive results showing
how Graph Cuts may be applied to optimize Markov random fields for convex ex-
pressions. Kolmogorov and Zabih [17] pointed out that a class of energies satisfying
certain submodularity constraints are graph representable, i.e. they can be efficiently
minimized by computing the cut of an appropriate graph.

One should mention that Belief Propagation (BP) has become popular to efficiently
perform Bayesian inference on graphs (see [10]). While BP is not limited by the above
submodularity constraints, to the best of our knowledge there are no optimality guaran-
tees for graphs with loops, such as the ones considered here.

The goal of the present paper is to provide a framework for learning empirical distri-
butions of labels from sample graphs, to impose these as statistical priors in the frame-
work of Bayesian inference on graphs and to specify which kinds of priors are consis-

3 In practice, increased speed of Markov Chain Monte Carlo methods can be obtained by using
bottom-up proposals and flipping entire patches of label values [2].



tent with graph-representable energy terms. The interpretation of submodularity in the
context of statistical learning allows us to specify a class of priors which can be learned
from samples and efficiently imposed within the framework of Bayesian inference. By
restricting ourselves to graph-representable priors, we can guarantee global optima in
polynomial time. In practice, we find the optimization times to be extremely fast.

As an illustration of our approach, we consider the problem of Bayesian restoration
of binary images. In particular, we will show that one can impose previously learned
information on correlation of the labels of pairs and triplets of vertices, as long as vertex
labels are positively correlated. Numerical experiments demonstrate that fairly complex
textural information can be learned, compactly represented and used for the efficient
and optimal restoration from noisy images. While the restoration of binary textures
may be considered a toy example, it shows that our method allows to impose statis-
tically learned shape information in large-scale combinatorial optimization problems,
providing global optima in polynomial runtime.

The outline of the paper is as follows. In Section 2, we will briefly review two lines
of work which form the backbone of our method, namely the concept of Bayesian in-
ference on graphs, and the submodularity conditions discussed in [17]. In Section 3,
we introduce the key contribution of this paper, namely a characterization of a class
of translation-invariant statistical priors on vertex labels which can be learned from
sample graphs and which can be efficiently imposed in Bayesian inference via Graph
Cuts. We define a measure of relevance of coupling terms which allows one to impose
only the most relevant of learned priors. In Section 4, we provide numerical results on
the restoration of binary images that illuminate different aspects of our method: highly
accurate restorations despite large amounts of noise, optimal restorations of fairly com-
plex textures in runtimes below one second, drastic speed-up through the use of sparse
priors, and improved restoration by using higher-order priors.

2 Bayesian Inference on Graphs

Let x = (x1, . . . , xn) ∈ {0, 1}n be a vector of binary variables. Assume we are given
a noisy version I = (I1, . . . , In) ∈ Rn of this binary-valued vector. Then we can make
use of the framework of Bayesian inference in order to reconstruct the vector x by
maximizing the posterior probability

P(x | I) =
P(I |x) P(x)

P(I)
. (2)

The Bayesian reasoning has become increasingly popular in the computer vision com-
munity [24], mainly for two reasons. Firstly, the conditional probabilityP(I |x) is often
easier to model, since it represents the likelihood of a certain observation I given a state
of the model x. Secondly, the Bayesian inference allows one to optimally integrate prior
knowledge by the term P(x), specifying which interpretations of the data are a priori
more or less likely.

In this paper, we will consider the specific case that the measurements Ii are mutu-
ally independent and that moreover they only depend on the value xi at the node i. Un-
der these assumptions, the data term in (2) can be written as: P(I |x) =

∏
i

P(Ii |xi).



In this paper, we consider the data term:

P (Ii |xi) ∝ exp
(

λ

1 + |Ii − xi|

)
. (3)

While alternative choices are conceivable, this is not the focus of this work. The free
parameter λ is currently chosen manually. Future research is focused on identifying an
automatic estimate. The application of Bayesian inference amounts to a combinatorial
optimization problem.

Kolmogorov and Zabih [17] recently discussed a class of cost functions which are
able to be optimized efficiently by Graph Cuts. To this end, one considers two classes of
cost functions denoted by F2 (and F3), representing functions E which can be written
as a sum of functions of up to two variables at a time:

E(x1, . . . , xn) =
∑
i<j

Eij(xi, xj), (4)

and up to three variables for F3. In this way, one can consider nested classes of pro-
gressively more complex functions F1 ⊂ F2 ⊂ . . . ⊂ Fn, where the latter class
corresponds to the full class of binary-valued functions.

In [17], Kolmogorov and Zabih pointed out that functions in F1, F2 and F3 can be
optimized in polynomial time with the Graph Cuts algorithm if they fulfill certain sub-
modularity constraints [18]. Namely, all functions in F1 are submodular, while func-
tions in F2 and F3 are submodular if, for all terms Eij(xi, xj) of two arguments

Eij(0, 0) + Eij(1, 1) ≤ Eij(0, 1) + Eij(1, 0), (5)

and, for all terms Eijk(xi, xj , xk) of three arguments, the same inequality must hold in
the remaining two arguments once any one of them is fixed.

3 Statistical Priors for Bayesian Inference

In the context of restoration of binary images, researchers have successfully exploited
generic priors P(x) on the space of label configurations x — such as the one used in the
well-known Ising model [15] — which favor neighboring nodes to have the same label.
Such priors lead to smooth restorations and are well suited for the removal of noise. Yet
they also lead to a blurring of (possibly relevant) small-scale structures. Moreover, given
sample images of the structures of interest, one may ask whether it is possible to learn
more appropriate object-specific priors P(x) and impose these within the framework of
Bayesian inference.

In this work, we are interested in priors which can be easily computed from the
histograms of joint co-occurrence of label pairs or triplets, along the lines pioneered
in [7, 12]. For a more sophisticated alternative to directly learn posterior distributions
using MCMC sampling, we refer to [19]. To link statistical priors to co-occurrence



frequencies, we rewrite the generic prior on a set of n variables as follows:

P(x1, . . . , xn) = P(x1, x2 |x3, . . . , xn)P(x3, . . . , xn)
= P(x1, x2 |x3, . . . , xn)P(x3, x4 |x5, . . . , xn)P(x5, . . . , xn)

= . . . =
∏
i odd

P(xi, xi+1 |xi+2, . . . , xn).
(6)

Let us now assume that the co-occurrence probability for any two variables does not
depend on a third variable. Under this assumption, (6) then simplifies to

P(x1, . . . , xn) =
∏
i odd

P(xi, xi+1). (7)

Obviously, we can carry out the same rearrangement using arbitrary pairings of the n
variables xi. Upon multiplying all these equations, each pair (xi, xj) obviously appears
the same number of times as a factor in the right-hand side. We get:

(P(x1, . . . , xn))Γ =
∏
i 6=j

P(xi, xj), (8)

where the constant Γ denotes the number of ways to generate such pairings divided by
the number of times each pair appears in the overall product. In the case of label pairs,
we have Γ =

(
n
2

)
. We obtain the prior energy:

E(x1, . . . , xn) = − logP(x1, . . . , xn) = − 1
Γ

∑
i 6=j

logP(xi, xj). (9)

Similarly, the relaxed assumption that the co-occurrence of labels for any triplet
(xi, xj , xk) does not depend on a fourth node, leads to an energy of the form

E(x1, . . . , xn) = − 1
Γ̃

∑
ijk

logP(xi, xj , xk), (10)

where the sum extends over all pairwise distinct triplets of nodes and Γ̃ =
(
n
3

)
. While

the above independency assumptions will generally not be fulfilled, let us make two
remarks: Firstly, the expressions for the priors (9) and (10) also hold if higher-order
effects do not contribute on the average. Secondly, the independency assumption can
be gradually relaxed by considering terms of increasing order of interaction. We will
refer to priors with an energy E ∈ Fk as priors of order k. In the following, we will
focus on the spaces F2 and F3. To circumvent the approximation in (7), the Markov
random field community has developed more sophisticated techniques to approximate
the prior in terms of local characteristics (see e.g. [24]).

For a second-order prior P , the energy E in (6) is of the form (4). Since we are
dealing with binary-valued variables, the each term Eij in (4) is of the form

Eij(xi, xj) = α11
ij xixj + α10

ij xi(1−xj) + α01
ij (1−xi)xj + α00

ij (1−xi)(1−xj), (11)



with four parameters associated with each vertex pair. According to (6), we can relate
these parameters to the probability of co-occurrence of label values:

α11
ij = − logP (xi =1 ∩ xj =1) , α10

ij = − logP (xi =1 ∩ xj =0) , . . . (12)

In the case of a third-order prior on binary-valued variables, the energy E in (6) is
given by a sum of energies Eijk taking on the form

Eijk(xi, xj , xk) = α111
ijk xixjxk + α110

ijk xixj(1−xk) + α101
ijk xi(1−xj)xk + . . .

with eight parameters associated with each vertex triplet and

α111
ijk = − logP(xi =1 ∩ xj =1 ∩ xk =1), α110

ijk = . . . (13)

The central idea of learning priors is to determine the parameters of the probabilis-
tic model (6) from samples of labeled graphs. According to (13), the parameter α111

ijk ,
for example, corresponds to the negative logarithm of the relative frequency of label
configuration (1, 1, 1) at the three nodes i, j and k.

In most relevant restoration algorithms one does not know the location of structures
of interest. Therefore it is meaningful to focus on the subclass of translation-invariant
priors, i.e. priors which treat all nodes identically. These are also referred to as spa-
tially homogeneous priors [24]. For priors of second order, the model parameters in
expression (11) can only depend on the relative location of node i and node j. In other
words αij = α(j−i) etc., where (j − i) denotes the vector connecting node i to node
j. Given a training image, one can estimate the parameters α11

(j−i), α
01
(j−i), α

10
(j−i), and

α00
(j−i) defining the translation-invariant prior distributions of second order, because the

probabilities of co-occurrence of label pairs in (12) can be approximated by their his-
togram values. Similarly, in the case of third-order priors, the eight parameters αijk in
(3) associated with each triplet of nodes only depend on the relative location of nodes i,
j and k. These parameters can be estimated from joint histograms of triplets computed
on a sample image.

Along the lines sketched above, it is possible to learn priors on the set of binary
variables from the empirical histograms computed on sample images. Such statistical
priors can be used in various ways. For example, as suggested by Shannon, one could
generate synthetic label configurations (binary images if the nodes correspond to image
pixels) by randomly sampling from the estimated distributions — see for example [7].
In the following, we will instead employ the empirically learned priors for the purpose
of reconstructing a labeling x = {x1, . . . , xn} ∈ {0, 1}n of a graph given a noisy
version I = {I1, . . . , In} ∈ Rn of it and given the knowledge that the labeling is
statistically similar to previously observed label configurations. The optimal restoration
is given by the maximum a posteriori estimate in (2). Equivalently, we can minimize
the negative logarithm of (2). With (3) and a translation-invariant prior of second order
obtained from equations (9), (4) and (11) this leads to an energy of the form:

E(x1, .., xn) =
∑

i

−λ

1 + |Ii − xi|
+

∑
i<j

(
α11

(j−i)xixj + α10
(j−i)xi(1−xj) (14)

+α01
(j−i)(1−xi)xj + α00

(j−i)(1−xi)(1−xj)
)
.



Similarly binary restoration with a translation-invariant prior of third order is done by
minimizing an energy of the form:

E({xi}) =
∑

i

−λ

1 + |Ii − xi|
+

∑
i<j<k

(
α111

(j−i,k−i)xixjxk + α110
(j−i,k−i)xixj(1−xk) + ...

)
,

(15)
with eight terms imposing learned correlations of the label at node i with labels at nodes
j and k. Due to the translation invariance, the parameters αijk = α(j−i,k−i) merely
depend on the vectors from i to j and from i to k.

Minimizing energies of the forms (14) or (15) over the space of binary variables
x ∈ {0, 1}n is in general a hard combinatorial problem.4 In the context of images with
relevant size, the number of nodes is on the order of n ∼ 2562 or larger, therefore an
exhaustive search or stochastic optimization methods such as simulated annealing are
not well-suited for this task.

While the Graph Cuts algorithm allows an efficient global optimization in polyno-
mial time, it only applies to a certain class of energies. The submodularity constraints
reviewed in Section 2, however, allow us to make a precise statement about which pri-
ors can be efficiently imposed in the Bayesian restoration using Graph Cuts. Using
the relation between energies and prior distributions given in (9), we can express the
submodularity constraint (5) in terms of probabilities:

− logP00 − logP11 ≤ − logP01 − logP10, (16)

where P00 = P(xi = 0 ∩ xj = 0) stands for the probability that both labels are 0 etc.
The above inequality is equivalent to the requirement that:

P00 P11 ≥ P01 P10. (17)

If the joint probability of label values at nodes i and j fulfills the above inequality,
then it can be efficiently imposed in the Bayesian restoration by solving the respective
max-flow/min-cut problem. In particular, this implies that for any two nodes which are
positively correlated (i.e. P00 ≥ max{P01,P10} and P11 ≥ max{P01,P10}), one can
impose their joint probability within the Graph Cuts framework. Beyond this, one can
also integrate priors stating that, for example, the label configuration (01) dominates all
other configurations while the configuration (10) is sufficiently unlikely for inequality
(17) to be fulfilled. On the other hand, joint priors modeling negative correlation, where
opposite labels (01) and (10) dominate, are not consistent with inequality (17).

Similarly, the submodularity constraints in [17] impose conditions for which the
distributions of triplets can be imposed within the Graph Cuts optimization. Namely,
the inequalities have to hold with respect to the remaining two arguments once any one
of them is fixed, i.e. if xi = 0 is fixed then the inequality in nodes j and k states:

P000 P011 ≥ P001 P010, (18)

where P000 =P(xi =0∩xj =0∩xk =0) represents the joint occurrence of three labels
of 0, etc. There are eight such constraints for each triplet.

4 For an example of an NP-hard problem in the class F2 see [17].



In practice, we compute these joint histograms from sample images and retain only
those priors which are consistent with the submodularity constraints (17) or (18). The
resulting cost function can be efficiently optimized by the Graph Cuts algorithm. In
other words: once we have selected an appropriate set of statistically learned priors,
we can perform the Bayesian inference in polynomial runtime. For details on how to
convert energy terms into respective edge weights of a graph, we refer to [17].

While the global optimum of the resulting restoration problem is guaranteed to be
computable in polynomial time, experimental evidence shows that increasing the num-
ber of constraints (and thereby the number of edges in the graph) will typically increase
the computation time: While the computation time for n = 2562 nodes with four con-
straints per node was on the order of 0.03 seconds, increasing the number of constraints
per node to 716 leads to a computation time of more than one minute. A simple remedy
to this problem is to only impose the most relevant constraints. The submodularity con-
straint in (5) guarantees that the edges of the corresponding graph have non-negative
weights [17]. Moreover, if the left side of inequality (5) is much smaller than the right
side, then the respective edges will have very large positive weights, hence they will
be very relevant to the computation of the minimal cut. Therefore, we can heuristically
define the relevance of a coupling term (11) between nodes i and j as the weight of
introduced edges:

relij = α10
ij + α01

ij − α11
ij − α00

ij . (19)

In the context of priors of third order, there are six submodularity constraints associ-
ated with each node triplet. As a measure of the relevance of a given triplet of nodes,
we simply compute the mean of the associated six relevance measures in (19). Qual-
itatively, this relevance measure states that the co-occurrence of identical label values
should dominate the histogram for a prior to be relevant.

4 Experimental Results

Figure 1 shows a binary pattern of vertical stripes of width two pixels, corrupted by
various amounts of salt-and-pepper noise.5 The second image shows the restoration
(with λ = 1) obtained using a second order prior coupling each pixel to the two nodes
directly above and to the right. The priors estimated from empirical histograms of stripe
patterns simply state that vertically neighboring pixels are very likely to be of the same
color. There is no preference in the horizontal direction: since the stripes are two pixels
wide, all pair combinations are equally likely. As a consequence, the restoration of the
noisier version is suboptimal in that the vertical stripes in the restoration are no longer
equidistantly spaced.6 With increasing noise level, the Bayesian restoration requires
increasingly sophisticated priors. The above prior on neighboring pairs of labels can
be extended in two ways: by increasing the neighborhood size and by generalizing to
higher-order interactions.

By increasing the neighborhood window in which priors are learned and imposed,
the resulting prior is still of second order, but it integrates correlations of a given node

5 “80% noise” means 80% of the pixels are replaced by a random value.
6 The restoration error gives the percentage of incorrectly labeled pixels.



80% noise5 Restor. (0% error) 90% noise Restor. (7% error)

Fig. 1. Fast restoration of simple patterns: Optimal restorations of noisy stripe patterns using
statistical priors learned from the joint histograms of a pixel with the neighbor above and the
neighbor to the right. While the left image was perfectly restored in 0.02 seconds, the right one
has a restoration error6 of 7% in 0.03 seconds (on a 200×200 image). Including couplings in
larger neighborhoods improves the restoration.7

Brodatz texture with 70% noise Restor. (375 constr.) Restor. (5 constr.)

Fig. 2. Efficient restoration of complex textures: The images on the left show a binarized Bro-
datz texture with 70% of noise. Using only relevant constraints (right image), the algorithm is not
only faster, but it also provides a better restoration. See Table 1 for a numerical comparison.

with more distant nodes. In the case of the stripe pattern in Figure 1, we learned the
joint probabilities for a pixel and its neighbors in 9× 9 window. This provides coupling
to 40 neighbors, 22 of which are submodular. This prior allows to identify horizontal
correlations. In the case of the stripe pattern in Figure 1, bottom, it provides a perfect
restoration in 1.6 seconds for an image of size 200×200, with λ = 1.7

In order to restore more complex patterns, it is necessary to consider joint distri-
butions of labels in increasingly large neighborhoods. This will lead to an increasing
number of edges in the respective graph, coupling each pixel to a larger and larger
number of surrounding pixels. In order to keep the computation time low, we impose
only the most relevant constraints according to the measure defined in (19). Figure 2
shows a binarized Brodatz texture (256×256 pixels) and the same texture with 70%
salt-and-pepper noise. On a sample texture image, we estimated the pairwise joint dis-
tributions for pixel couplings in a neighborhood of 35×35 pixels. Among these 612
possible neighbor nodes, 375 provided submodular constraints fulfilling the inequality
(17). Using all 375 constraints, the computation of the optimal restoration took 23.2 sec-
onds, giving a restoration error of 23.6%. Using only the five most relevant constraints

7 Imposing pair priors on a neighborhood size of 9 × 9, we found that one obtains perfect
restorations of the stripe pattern in Figure 1 even with 99% noise.



Number of constraints 375 53 21 13 7 5 3

CPU time (s) 23.2 2.92 1.45 0.86 0.47 0.40 0.33

Restoration error (%) 23.6 23.6 22.2 21.2 20.0 20.0 23.3

λ 38 38 33 20 13 8 4

Table 1. Efficiency with sparse priors: Run time, restoration error and appropriate λ values for
decreasing number of constraints imposed in the restoration of the Brodatz texture (Fig. 2). Using
only the most relevant constraints leads to improvements both with respect to the run time and,
surprisingly, with respect to the restoration error (up to a minimal set of constraints) — see text.
The highlighted error values are associated with the restorations in Fig. 2.

Escher drawing with 50% noise Restoration (19.6% error)

Fig. 3. Larger neighborhood systems: Restoration of a noisy drawing of M. C. Escher using the
20 most relevant second order constraints estimated in a 130×130 window. In contrast to generic
smoothness priors, the statistically learned priors do not lead to a blurring of image structures.

allowed an optimal restoration in 0.4 seconds. Surprisingly, the restoration error was
only 20%. Respective restorations are shown in Figure 2, third and fourth image.

Table 1 shows respective run-times, restoration errors and appropriate values of λ
for imposing varying numbers of relevant constraints which were selected by thresh-
olding the relevance (19) computed for each node pair. The computation time decreases
with fewer constraints used. Moreover, the restoration error decreases when using only
the most relevant constraints (up to a certain minimal set of constraints). We believe
that this property is due to the fact that less relevant constraints may impose spurious
correlations, especially when computed from not perfectly periodic textures such as the
Brodatz texture. Using only the relevant constraints will assure that the algorithm makes
use of only those couplings that are persistent throughout the entire texture.

The selection of relevant terms becomes more crucial when learning priors for
larger-scale structures, as these require to consider larger neighborhoods. Figure 3 shows
the restoration of a noisy version of a drawing by M. C. Escher.

As suggested in Section 2, one can learn and impose priors on the joint distribution
of triplets of labels — provided that the submodularity conditions (18) are fulfilled.
In practice, the key difficulty of learning third-order priors is that the consideration of
all possible node triplets is infeasible for graphs of meaningful size: For a graph of
256×256 nodes, there exist

(
2562

3

)
≈ 5 ·1013 possible triplets. To consider all possible

triplets within a certain neighborhood of each node (without counting some more often



Noisy Brodatz texture 2nd order restor. (ε=14.4%) 3rd order restor. (ε=13.5%)

Fig. 4. Triplets versus pairs: Restoration using priors of second and third order on a Brodatz tex-
ture with 50% noise. Both priors impose the eleven most relevant constraints in a neighborhood
of 15 pixels. Including terms of third order reduces the reconstruction error ε from 14.4% (com-
puted in 0.5 seconds) to 13.5% (computed in 2.8 seconds). Exploiting knowledge about the joint
probability of triplets (rather than pairs) provides additional submodularity of the reconstruction.

than others) turns out to be a challenging problem as well. In order to count all triplets in
a certain “vicinity” of a node, we revert to the following solution: For each node of the
graph, we consider all triangles of a fixed maximal circumference δ (measured in the
Manhattan distance) with one vertex at the node of interest. The parameter δ provides
a measure of the “vicinity” analogous to the window size in the case of pairs. Figure
4 shows restorations of a noisy Brodatz texture obtained with second and third order
priors, respectively. In the specified neighborhood, we identified 215760 triplets per
node, 7873 of which provided submodular constraints. We used a threshold θ = 2.1 on
the respective relevance of pairs (or triplets) — see (19) — leaving eleven constraints
for each node in the graph. Imposing constraints on the joint distribution of triplets
(rather than pairs) reduced the restoration error ε from 14.4% to 13.5%.

5 Conclusion

We proposed to introduce statistically learned priors into an efficient method for Bayesian
inference on graphs. Building up on submodularity constraints for graph-representability,
we specified a class of spatially homogeneous priors of second and third order which
can be learned from co-occurrence histograms and which can be efficiently imposed
by computing Graph Cuts. In particular, we showed that priors favoring labels to be
similar are part of this class. To the best of our knowledge, this is the first time that sta-
tistically learned priors of second and third order were introduced into an efficient and
exact combinatorial optimization algorithm. We believe that our contribution will help
to bridge the gap between statistical learning for Bayesian inference and efficient com-
binatorial optimization. As an illustration of our method, we demonstrated that one can
compute optimal restorations of rather complex binary textures from images which are
heavily corrupted by noise in runtimes on the order of seconds. Future work aims at an-
swering several open questions: Are there graph-representable priors beyond the class
considered here? Are there ways of generalizing the invariance group from translation
to rotation and scale invariance?
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