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Abstract

We summarize the work presented in [4] to ICCV09 that
expresses a common energy function corresponding to the
graph cuts, random walker, shortest path and optimum span-
ning forest optimization algorithms for seeded image seg-
mentation. We also propose a new family of segmentation
algorithms producing optimal spanning forests which we
term power watersheds. Placing the watershed algorithm
in this energy minimization framework also opens new pos-
sibilities for using unary terms in traditional watershed
segmentation and using watersheds to optimize more gen-
eral models of use in applications beyond image segmenta-
tion. We illustrate the framework with a novel application
to unseeded segmentation.

Index Terms— Optimization, Image Segmentation, Opti-
mal Spanning Forest

1 Introduction

The modern variations on interactive segmentation algo-
rithms are primarily built on top of a small set of core algo-
rithms — graph cuts (GC), random walker (RW) and short-
est paths forests(SPF). Recently these three algorithms were
all placed into a common framework that allows them to
be seen as instances of a more general seeded segmenta-
tion algorithm with different choices of a parameter act-
ing as an exponent on the differences between neighbor-
ing nodes [7]. In addition to these algorithms, the ubiqui-
tous seeded watershed segmentation algorithm [2] shares a
similar seeding interface but only recently was a connec-
tion made between the watershed algorithm and graph cuts
[1]. We summarize here how this connection between wa-
tersheds and graph cuts can be used to further generalize
the seeded segmentation framework of [7] such that water-
sheds, graph cuts, random walker and shortest paths may
all be seen as special cases of a single general seeded seg-
mentation algorithm.

2 A seeded image segmentation fra-
mework
A graph consists of a pair G = (V, E) with verticesv € V

and edges e € E C V x V with cardinalities n = |V|
and m = |E|. An edge, e, spanning two vertices, v;
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and v; , is denoted by e;;. In image processing applica-
tions, each pixel is typically associated with a node and
the nodes are connected locally via a 4 or 8-connected lat-
tice. A weighted graph assigns a (typically non-negative
and real) value to each edge called a weight. The weight
of an edge e;; is denoted by w(e;;) or w;;. We also de-
note wr; and wp; as the unary weights penalizing fore-
ground and background affinity at node v;. In the context
of segmentation and clustering applications, the weights
encode nodal affinity such that nodes connected by an edge
with high weight are considered to be strongly connected
and edges with a low weight represent nearly disconnected
nodes. One common choice for generating weights from
image intensities is to set

wi; = exp(—B (I — I;)?),

where [; is the image intensity at node (pixel) v;.
Given foreground F’ and background B seeds, our model
for producing segmentation s is given by
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It was shown in [5] that if the seeds are the maxima of
the weighting function, Maximum Spanning Forest(MSF)
are equivalent to watersheds. Recently, [1] showed that
when ¢ = 1 (graph cuts) and p — oo then the mini-
mum of (2) is given by a maximum spanning forest al-
gorithm. Said differently, it was shown in [1] that as the
power of the weights increases to infinity, then the graph
cuts algorithm produces a segmentation corresponding to a
maximum spanning forest. Interpreted from the standpoint
of the Gaussian weighting function in (1), it is clear that
we may associate 3 = p to understand that the watershed
equivalence comes from operating the weighting function
in a particular parameter range. An important insight from
this connection is that above some value of 3 we can re-
place the expensive max-flow computation with an efficient
maximal spanning forest computation. We state in the next
section that this statement is true for any of the algorithms
corresponding to different q.

When p is a small finite value, then the various values
of ¢ may be interpreted respectively as the graph cuts (¢ =
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p 0 finite 0
q

Reduction| Graph Maximum Span-

1 P s [7] ning Forest (Wa-
to seeds | cuts tershed [5]) [1]

b {o-norm | Random Power watershed
Voronoi | walker[7] | ¢ =2

o {1-norm | {¢1-norm Shortest Path For-
Voronoi | Voronoi est [7]

Table 1: Our generalized scheme for image segmentation
includes several popular segmentation algorithms as spe-
cial cases of the parameters p and q. The power water-
sheds are previously unknown in the literature, but may all
be optimized efficiently with a maximal spanning forest
calculation.

1), random walker (¢ = 2) and shortest paths (geodesics)
(g = o00) algorithms which form the underpinning for many
of the advanced image segmentation methods in the liter-
ature. When p — oo and ¢ = 1, then [1] showed that
(2) may be interpreted as an MSF algorithm. However, by
raising p — oo and varying the power ¢ we obtain a pre-
viously unexplored family of segmentation models which
we refer to as power watersheds. An important advantage
of power watersheds with varying ¢ is that the main com-
putational burden of these algorithms depends on an MSF
computation, which is extremely efficient [3]. In the next
section we study the case p — oo there exists a value of
p after which any of the algorithms (regardless of ¢) may
be computed via an MSF. Table 1 gives a reference for the
different algorithms generated by various value of p and q.

We give in [4] an algorithm to minimize (2) for any
value of ¢ > 1 when p — o0.

3 The case p — o0, g finite

We generalize the link between GC and MSF established
by Alene et al. [1] by proving that GC, RW, and generally
all g-cuts converge to MSF as p tends to infinity.

We define a g-cut by the set of edges having their ver-
tices in two different connected components of the seg-
mentation s. A MSF cut is the set of edges that links two
different connected components of a maximum spanning
forest. If M is a subgraph of G and if each weight w is
unique, then any g-cut relative to M for [w]? when p — oo
is a MSF cut relative to M for w.

The labeling solution x of any ¢-cut relative to M for
[w]? when p — oo and all the weights are different is bi-
nary, as illustrated on Fig. 1.

In the case of an arbitrary set of weights (some weights

can be equal), any g-cut relative to M for [w]? when p —
oo is a MSSF cut relative to M for w when M is the set of all
maxima of the image. This is due to the fact that by adding
the edges to the forest by decreasing weight order, we only
encounter plateaus (connected set of edges of same weight)
in order. A method for forcing any set of markers to be the
only maxima of an image is to apply a reconstruction [6].
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Figure 1: Illustration of progressive convergence to the
power watershed result as p — oo, using ¢ = 2. Top row:
Segmentation results with p = 1, p = 8, p = 25 and the
power watershed. Bottom row: Corresponding potentials
for p =1, p = 8, p = 25 and the input seeds.

4 Seeded image segmentation

We compared the algorithms of our framework using a 2D
vision database of images with ground truth and seeds from
the “grabcut” project (http://research.microsoft.com/en-us/
um/cambridge/projects/visionimagevideoediting/segmen-

tation/grabcut.htm). Example segmentations for five al-
gorithms of our framework (graph cuts, random walker,
shortest paths, maximum spanning forests (watersheds) and
powerwatersheds with ¢ = 2) with the original Grabcut
database seeds are shown in [4].

The seeds provided by the Grabcut database being equi-
distant from the ground truth boundary, to remove any bias
from this seed placement on our comparative results, we
produced an additional set of seeds by significantly erod-
ing the original foreground seeds.

When segmenting with the first seeding strategy (the
seeds contained in the Grabcut database), all the algorithms
are comparable. Experiments on the second set of seeds
show that power watersheds and GCs yield better results
than the other algorithms. The RW and the SPF algorithms
show good results for the first set of seeds because these
two algorithms do well when the seeds are placed roughly
equidistant from the desired boundary [7], as they are in
the seeds provided with the Grabcut database. In contrast,
the power watershed performed very well under both seed-
ing strategies, showing a strong robustness to both seed
quantity and location. More details can be found in [4].
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5 Example of unseeded segmentation
We now present an application of the framework to un-
seeded segmentation. This application is not presented in

[4]. The unary terms in (2) are treated as binary terms con-
nected to phantom seeds vy and v, i.e.,

sz}i(azi - 0)7 + Zw%i(asi —-1)! =

> whi(@i—wp)? + Y whi(zi—ap)? (3)

Figure 2: Example of unseeded segmentation of a 3 x 3
image computed a maximum spanning forest.

For the example of unseeded segmentation, the wei-
ghts wp; between vp and v; can be fixed to reflect the
agreement with the intensity at pixel v; and a prior inten-
sity model of the foreground and background intensities. A
simple model that we use in this example is the difference
between the pixel intensity and a learned mean intensity
for both foreground and background. An example of such
a weighted graph is given in Fig. 3. Given these unary
terms, we may apply any of the algorithms of our frame-
work on the resulting graph. An example of result is shown
at Fig. 4.

6 Conclusion

We have proposed a general framework encompassing graph

cuts, random walker, shortest path, and watersheds. In es-
tablishing the connection between the random walker and

Figure 3: Unseeded segmentation using unary terms. (a)
Original image of blood cells, (b) Graph Cuts, (c) Power
Watershed with q=2 performed without geodesic recon-
struction. The result of segmentation with maximum span-
ning forest using Prim’s or Kruskal’s algorithm is very sim-
ilar in practice because of the lack of plateaus in the gradi-
ent of the image.

optimal forest algorithms, we produced the power water-
shed algorithm (with ¢ = 2) that have the property of pro-
viding a unique segmentation unlike most watersheds al-
gorithms, is faster than graph cuts and random walker, can
perform multi-seeds segmentation unlike graph cuts, and is
more robust to seeds placement than shortest path forests.
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