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Introduction

Variational Models: Motivations

Observation equation: o = Af + b

Energy minimization

Regularization

observable data
nD scene

acquisition
discretization

observed data
restauration

segmentation
interpolation

f A,b o

inverse problems

Find f knowing A (hypothesis on noise b)
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Introduction

Variational Models: Motivations

Problem

Given:

a weighted graph (V , W ),

a fonction f 0 : V → Rm such that f 0 = Af + n.

Approximate f : V → Rm such that it is sufficiently regular and sufficiently close to f 0
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Introduction

Continuous methods

Continuous variational methods:

hypothesis : f 0 : Ω ⊂ Rn → R continuous, dfined on a continuous domain Ω,

minimization of an energy of the form E(f , f 0, λ) = Eregu(f ) + λEapprox (f , f 0),

example : min
f :Ω→R

Z
Ω
| 5 f |p + λ‖f − f 0‖22

ff
dicretization of the solution

Principal problems:

definition of differential operators for spaces of complex topology

data defined on spaces of high dimension

Solution: digitalization of continuous methods

f 0 : V → R discrete, defined on the vertices of (V , W )

remplace
R
Ω by

P
V , definition of discrete differential operators
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Preliminary Definitions Graphs and Functions on Graphs

Graphs

Graph (V , W )

V a set of vertices with |V |= n

W = (wij )i,j=1,··· ,n a similarity matrix with wij ≥ 0

(V , W ) undirected if W is symmetric (wij = wji ), and directed otherwise

E ⊂ V × V a set of edges eij = (i , j)

Ni = {j ∈V : (i , j)∈E} neighborhood of i ∈V

Degree of a vertex

directed graph: outgoing and ingoing sum of weights

dout
i

def.
= 1

n

X
j∈V

wij , d in
i

def.
= 1

n

X
j∈V

wji , with d in
i + dout

i > 0, ∀i ∈ V| {z }
connected graph

undirected graph: dout
i ≡ d in

i

di
def.
= 1

n

X
j∈V

wij
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Preliminary Definitions Graphs and Functions on Graphs

Functions on Graphs

Functions on vertices

function space RV with inner product

〈f , g〉V
def.
= 1

n

X
i∈V

figiϕi

with f , g : V → R

and ϕi
def.
= ϕin(d

in
i ) + ϕout(d

out
i )

Hilbert space

H(V , ϕ)
def.
= (RV , 〈·, ·〉V )

Functions on edges

function space RE with inner product

〈F , G〉E
def.
= 1

2n2

X
i∈V

X
j∈V

FijGijφij

with F , G : E → R

and φij
def.
= φ(wij )

Hilbert space

H(E , φ)
def.
= (RE , 〈·, ·〉E )
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Preliminary Definitions Images and Graphs

2D Images and Graphs

Image f : Ω⊂Z2→R becomes f : V →R
Each pixel pi =(xi , yi )∈Ω becomes a vertex i ∈V

Adjacency grid graphs: natural representation

4-adjacency grid graph

8-adjacency grid graph

⇒ undirected graphs

Neighborhood graphs

ε-neighborhood graph: j ∈Ni ⇔ dist(i , j)≤ ε

dist(i , j)= ‖pi − pj‖2
dist(i , j)= Chebyshev distance (patches)
dist(i , j)= |fi − fj |
. . .

k-nearest neighbors graph (directed)

. . .

Neighborhoods

wij =1, wij = 1√
2

wij = 1
dist(i,j)
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Preliminary Definitions Images and Graphs

Weight Functions

Image f : Ω⊂Z2→R becomes f : V →R

Whatever the structure of the graph,
weights are generally computed using:

wij = 1
‖fi−fj‖α

2 +ε
, α > 0

wij = exp

„
− ‖fi−fj‖2

2

σ2

«
wij = exp

„
− ‖pi−pj‖2

2

σ2
Ω

«
exp

„
− ‖fi−fj‖2

2

σ2

«
wij = exp

„
−
‖patchi−patchj‖

2
2,a

h2

« similar patches
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Preliminary Definitions Images and Graphs

Patch-Based Geometry of Images

uniformly smooth images discontinuous images with bounded variations
patches: linear gradient of intensity patches: finite length level sets

cartoon images locally parallel textures
patches: binary straight edges patches: directional oscillations
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Operators and Diffusion First order operators

Difference Operator and its Adjoint

Difference operator d :H(V , ϕ)→H(E , φ)

(df )ij
def.
= γij

`
αj fj − αi fi

´
with γ : V ×V →R+

example: γij =
√

wij and αi =
p

1/di

bounded, linear, antisymmetric

(∇f )i = ((df )ij )j∈V

Adjoint d∗ :H(E , φ)→H(V , ϕ) of difference d

〈df , G〉E
def.
= 〈f , d∗G〉V

(d∗G)(i) =
αi

2nϕi

X
j∈V

γjiGjiφji| {z }
outgoing flow

−
αi

2nϕi

X
j∈V

γijGijφij| {z }
ingoing flow

i

l k

j
(df)(i,j)

(df)(j,i)
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Operators and Diffusion Second Order Operators and Diffusion

Laplace Operator

General Laplacian ∆:H(V , ϕ)→H(V , ϕ)

∆
def.
= d∗d

(∆f )i =
αi

2nϕi

X
j∈V

“
γ2

ijφij + γ2
jiφji

” `
αi fi − αj fj

´
⇒ linear

Undirected graph
γij = γji unweighted graph weighted graph

Combinatorial Laplacian

(∆(c)f )i = δi fi − 1
n

X
j∈V

wij fj

∆(c)f = (D −W )f

with αi = 1, γij =
√

wij ,
ϕi = 1, φij =1

Random walk Laplacian

(∆(r)f )i = fi − 1
nδi

X
j∈V

wij fj

∆(r)f =(I − D−1W )f

with αi =1, γij =
√

wij ,
ϕi = δi , φij =1

Normalized Laplacian

(∆(n)f )i = fi − 1

n
√

δi

X
j∈V

wijp
δj

fj

∆(n)f =(I − D−
1
2 WD−

1
2 )f

with αi = 1/
√

δi , γij =
√

wij ,
ϕi = 1, φij =1
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Operators and Diffusion Second Order Operators and Diffusion

Laplacian Diffusion

∂t fi = (∆f )i , ∀i ∈ V with combinatorial Laplacian and 4-adjacency grid graph

unweighted graph

weighted graph
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Operators and Diffusion Second Order Operators and Diffusion

Curvature Operator

Curvature operator κ :H(V , ϕ)→H(V , ϕ)

κf
def.
= d∗

„
df

‖df ‖2

«
(κf )i =

αi

2nϕi

X
j∈V

 
γ2

ijφij

‖(∇f )i‖2
+

γ2
jiφji

‖(∇f )j‖2

!`
αi fi − αj fj

´
⇒ nonlinear
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Operators and Diffusion Second Order Operators and Diffusion

Diffusion Based on Curvature

∂t fi = (κf )i , ∀i ∈ V with combinatorial curvature and 4-adjacency grid graph

unweighted graph

weighted graph
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Operators and Diffusion Second Order Operators and Diffusion

p-Laplacian Operator

Graph p-Laplacian ∆p :H(V , ϕ)→H(V , ϕ), p ∈ (0, +∞)

∆pf
def.
= d∗

 
df

‖df ‖2−p
2

!

(∆pf )i =
αi

2nϕi

X
j∈V

 
γ2

ijφij

‖(∇f )i‖2−p
2

+
γ2

jiφji

‖(∇f )j‖2−p
2

!`
αi fi − αj fj

´
⇒ nonlinear for p 6= 2
⇒ extends Laplace and curvature operators
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Operators and Diffusion Second Order Operators and Diffusion

p-Laplacian Diffusion

∂t fi = (∆pf )i , ∀i ∈ V with combinatorial curvature, 4-adjacency grid graph and p = 0.7

unweighted graph

weighted graph
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Operators and Diffusion Second Order Operators and Diffusion

p-Laplacian Operator Based on Differences

Graph p-Laplacian ∆̃p :H(V , ϕ)→H(V , ϕ), p ∈ (0, +∞)

∆̃pf
def.
= d∗

„
df

|df |2−p

«
(∆̃pf )i =

αi

2nϕi

X
j∈V

 
γ2

ijφij

|(df )ij |2−p
+

γ2
jiφji

|(df )ji |2−p

!`
αi fi − αj fj

´
⇒ nonlinear for p 6= 2
⇒ extends Laplace operator with differences
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Non-Adaptive Regularization

Discrete Regularization on graphs

Considered discrete variational problem

Given a graph (V , W ) and a function f 0 : V → R, find a function f : V → R which is
sufficiently regular on G , and sufficiently close to f 0:

argmin
f :V→R

{ E(f , f 0, λ, p) = 1
2p

X
i∈V

‖(∇f )i‖p2| {z }
regularization termJ(f )

+ λ
2

X
i∈V

(fi − f 0
i )2

| {z }
fitting term ‖f−f 0‖2

2

}

Special cases

p = 2: Tikhonov regularization (for example [Chung, 97])

p = 1: fitted TV regularization (on unweighted graphs [Osher and Shen, 00])

Existance of the minimizer

p ≥ 1: unique solution (E is strickly convex)

p < 1: the global minimizer may not exist (E is non-convex)
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Non-Adaptive Regularization

Discrete Regularization on graphs

Considered discrete variational problem

Given a graph (V , W ) and a function f 0 : V → R, find a function f : V → R which is
sufficiently regular on G , and sufficiently close to f 0:

argmin
f :V→R

{ E(f , f 0, λ, p) = 1
2p

X
i∈V

‖(∇f )i‖p2| {z }
regularization termJ(f )

+ λ
2

X
i∈V

(fi − f 0
i )2

| {z }
fitting term ‖f−f 0‖2

2

}

Regularization functional

nonlocal expression:

J(f ) = 1
2p

X
i∈V

0@X
j∈V

wij (fj − fi )
2

1A
p
2

continous analogue ([Kinderman et al., 05] [Gilboa and Osher, 07] pour p = 2 et p = 1):

J(f ) = 1
p

Z
Ω

„Z
Ω

w(x , y)(f (y)− f (x))2dy

« p
2

dx , f : Ω ⊂ R2 → R
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Non-Adaptive Regularization

Discrete Regularization on graphs

Considered discrete variational problem

Given a graph (V , W ) and a function f 0 : V → R, find a function f : V → R which is
sufficiently regular on G , and sufficiently close to f 0:

argmin
f :V→R

{ E(f , f 0, λ, p) = 1
2p

X
i∈V

‖(∇f )i‖p2| {z }
regularization termJ(f )

+ λ
2

X
i∈V

(fi − f 0
i )2

| {z }
fitting term ‖f−f 0‖2

2

}

Solution: system of equations based on the p-Laplacian

Euler-Lagrange equation
∂J(f )

∂fi
+ λ(fi − f 0

i ) = 0, ∀i ∈ V

Property: ∂J(f )
∂fi

= (∆pf )i ∀i ∈ V
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Non-Adaptive Regularization

Discrete Diffusion Process

Considered discrete variational problem

Given a graph (V , W ) and a function f 0 : V → R, find a function f : V → R which is
sufficiently regular on G , and sufficiently close to f 0:

argmin
f :V→R

{ E(f , f 0, λ, p) = 1
2p

X
i∈V

‖(∇f )i‖p2| {z }
regularization termJ(f )

+ λ
2

X
i∈V

(fi − f 0
i )2

| {z }
fitting term ‖f−f 0‖2

2

}

Solution: discrete diffusion process8>><>>:
f (0) = f 0

f
(t+1)
i =

λf 0
i +

P
j∈V γp

w (f (t), i , j)f
(t)
j

λ +
P

j∈V γp
w (f (t), i , j)

, ∀j ∈ V .

where γp
w (f , i , j) = wij (‖(∇f )i‖p−2

2 + ‖(∇f )j‖p−2
2 )
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Non-Adaptive Regularization

Unified Framework

Depending on the choice of:

degree of regularity p

fitting parameter λ

structure of the graph

Different processes using the discrete diffusion:

Spectral analysis on graphs and Laplacien smoothing (p = 2, λ = 0)

Image processing:

Regular grid:

digital TV filter (p = 1, w = 1) [Osher and Shen, 00]
Bilateral filter (p = 2, λ = 0, 1 itration) [Tomasi et Manduchi, 98]
NL-means filter (p = 2, λ = 0, 1 itration) [Buades et al., 05]

Abstract representation of images

Mesh processing

Non-organized data processing
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Non-Adaptive Regularization

Behavior: image processing

Local regularization on the 4-adjacency graph

digital filters [Osher and Shen, 2000] [Bougleux et al, SSVM 07]

w = 1 wij = exp

„
− ‖f

0
i −f 0

i ‖
2
2

σ2

«

p = 2

p = 1
λ = 0.05 λ = 0.005 λ = 0.05 λ = 0.005

Sébastien Bougleux (GREYC) Regularization October 12, 2008 27 / 36



Non-Adaptive Regularization

Behavior: image processing

Local regularization on the 4-adjacency graph

wij = exp

„
−
‖f 0

i −f 0
j ‖

2
2

σ2

«
wij = exp

„
− ‖f

0
i −f 0

i ‖
2
2

σ2

«

p = 0.7

p = 0.1
λ = 0.005 λ = 0 λ = 0.005 λ = 0
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Non-Adaptive Regularization

Behavior: image processing

Nonlocal regularization on regular neighborhood graphs

particular case: p = 2, λ = 0 and 1 iteration → NL-means filter [Buades et al., 05]

extension for p 6= 2, λ > 0 and several iterations

NL-means weight:

wij = exp

 
−
‖patchi (f

0), patchj (f
0)‖22,a

h2

!
.

p = 2 p = 1 p = 0.7 p = 0.1
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Non-Adaptive Regularization

Behavior: image processing

Nonlocal regularization on regular neighborhood graphs

particular case: p = 2, λ = 0 and 1 iteration → NL-means filter [Buades et al., 05]

extension for p 6= 2, λ > 0 and several iterations

NL-means weight:

wij = exp

 
−
‖patchi (f

0), patchj (f
0)‖22,a

h2

!
.

p = 2 p = 1 p = 0.7 p = 0.1
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Non-Adaptive Regularization

Behavior: polygonal curves

(V , W ) f 0 : V → R2

p = 2

p = 1

decreasing values of λ
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Non-Adaptive Regularization

Behavior: polygonal curves

(V , W ) f 0 : V → R2

p = 0.7

p = 0.001

decreasing values of λ
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Non-Adaptive Regularization

Behavior: polygonal surfaces

(V , W )
f 0 : V → R3

p = 2

decreasing values of λ
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Non-Adaptive Regularization

Behavior: polygonal surfaces

(V , W )
f 0 : V → R3

p = 1

decreasing values of λ
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Non-Adaptive Regularization

Behavior: polygonal surfaces

(V , W )
f 0 : V → R3

p = 0.7

decreasing values of λ

Sébastien Bougleux (GREYC) Regularization October 12, 2008 30 / 36



Non-Adaptive Regularization

Behavior: polygonal surfaces

(V , W )
f 0 : V → R3

p = 0.1

decreasing values of λ
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Non-Adaptive Regularization

Behavior: polygonal surfaces

(V , W ) zoom
f 0 : V → R3

p = 2 p = 1 p = 0.7 p = 0.1
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Adaptive Regularization

Adaptive Model

Variational Problem

Find both solution f ∗ : V → R and adapted weights w∗

(f ∗, w∗) = argmin
(f ,w)

1
2
‖f 0 − Af ‖22 + λJw (f )

where

Jw (f ) = 1
2p

X
i∈V

0@X
j∈V

wij (f )(fj − fi )
2

1A
p
2

Iterative Minimization Algorithm for p = 2

Step 1: w fixed, find f by a gradient descent

f ∗ ← f + τA(Af − f 0)− τλ∆f

Step 2: f ∗ fixed, estimate w∗ and go back to step 1

For non-smooth functionals (p = 1), replace gradient descent by proximal iterations
See [Peyré, Bougleux and Cohen, ECCV 2008]
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Adaptive Regularization

Inpainting Results
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Adaptive Regularization

Super-resolution Results
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Conclusion

Conclusion

Open problem: find both solution f ∗, adpated weights w∗ and adapted graph topology
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Conclusion

Regularization in Image Processing
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